Effects of tree fall on soil Collembola: Disentangling the role of gap formation and deadwood addition

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE Geoderma Pub Date : 2025-02-20 DOI:10.1016/j.geoderma.2025.117217
Yan Zhang , Zhou Zheng , André Junggebauer , Melanie M. Pollierer , Stefan Scheu
{"title":"Effects of tree fall on soil Collembola: Disentangling the role of gap formation and deadwood addition","authors":"Yan Zhang ,&nbsp;Zhou Zheng ,&nbsp;André Junggebauer ,&nbsp;Melanie M. Pollierer ,&nbsp;Stefan Scheu","doi":"10.1016/j.geoderma.2025.117217","DOIUrl":null,"url":null,"abstract":"<div><div>Increased frequency of climate extremes causes large scale forest decline associated with gap formation and input of deadwood to the forest floor, which largely changes soil systems. However, for disentangling the effects of gap formation and deadwood addition, experimental manipulations allowing to separate the effects of each are needed. Based on a large-scale full-factorial forest gap and deadwood addition experiment, we analyzed the response of soil invertebrates (Collembola) to gap formation and deadwood addition across three geographical regions in Germany i.e., the Alb, Hainich and Schorfheide. Both gap formation and deadwood addition altered the taxonomic richness, density and traits of Collembola communities. The effects of gap formation and deadwood addition were independent of each other but varied among regions, reflecting the importance of both geographic and historical context, as well as environmental changes such as variations in climate. Gap formation strongly decreased total density of Collembola in the Hainich but increased it in the Schorfheide, indicating that the effect is negative in regions with high precipitation and deep soils but positive in regions with low precipitation and shallow soils. Deadwood addition little affected Collembola density but restructured the community composition and increased overall functional and species taxonomic richness, presumably by expanding niche space by increased habitat heterogeneity. Gap formation filtered for small-sized and soil-living species via decreased soil moisture, but did not affect other traits such as number of ocelli and reproduction mode. The results suggest that gap formation and deadwood addition affect Collembola communities and traits in an independent way. Overall, the results indicate that deadwood is pivotal for soil diversity conservation, and forest gaps detrimentally affect animals deeper in soil being adapted to moist conditions.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"455 ","pages":"Article 117217"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706125000552","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Increased frequency of climate extremes causes large scale forest decline associated with gap formation and input of deadwood to the forest floor, which largely changes soil systems. However, for disentangling the effects of gap formation and deadwood addition, experimental manipulations allowing to separate the effects of each are needed. Based on a large-scale full-factorial forest gap and deadwood addition experiment, we analyzed the response of soil invertebrates (Collembola) to gap formation and deadwood addition across three geographical regions in Germany i.e., the Alb, Hainich and Schorfheide. Both gap formation and deadwood addition altered the taxonomic richness, density and traits of Collembola communities. The effects of gap formation and deadwood addition were independent of each other but varied among regions, reflecting the importance of both geographic and historical context, as well as environmental changes such as variations in climate. Gap formation strongly decreased total density of Collembola in the Hainich but increased it in the Schorfheide, indicating that the effect is negative in regions with high precipitation and deep soils but positive in regions with low precipitation and shallow soils. Deadwood addition little affected Collembola density but restructured the community composition and increased overall functional and species taxonomic richness, presumably by expanding niche space by increased habitat heterogeneity. Gap formation filtered for small-sized and soil-living species via decreased soil moisture, but did not affect other traits such as number of ocelli and reproduction mode. The results suggest that gap formation and deadwood addition affect Collembola communities and traits in an independent way. Overall, the results indicate that deadwood is pivotal for soil diversity conservation, and forest gaps detrimentally affect animals deeper in soil being adapted to moist conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
期刊最新文献
Quantitative evaluation of carbon dioxide emissions from the subsoils of volcanic and non-volcanic ash soils in temperate forest ecosystems Evaluation and improvement of spatiotemporal estimation and transferability of multi-layer and profile soil moisture in the Qinghai Lake and Heihe River basins using multi-strategy constraints Effects of tree fall on soil Collembola: Disentangling the role of gap formation and deadwood addition Infiltration mechanism and source of soil water in alpine meadows based on stable isotope tracing Deep-rooted perennials alter microbial respiration and chemical composition of carbon in density fractions along soil depth profiles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1