Infiltration mechanism and source of soil water in alpine meadows based on stable isotope tracing

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE Geoderma Pub Date : 2025-02-20 DOI:10.1016/j.geoderma.2025.117224
Li Zongjie , Xu Bin , Liu Xiaoying , Li Zongxing , Feng Qi , Wang Dongpeng , Zhang Wenbao , Li Hao , Liu Fang
{"title":"Infiltration mechanism and source of soil water in alpine meadows based on stable isotope tracing","authors":"Li Zongjie ,&nbsp;Xu Bin ,&nbsp;Liu Xiaoying ,&nbsp;Li Zongxing ,&nbsp;Feng Qi ,&nbsp;Wang Dongpeng ,&nbsp;Zhang Wenbao ,&nbsp;Li Hao ,&nbsp;Liu Fang","doi":"10.1016/j.geoderma.2025.117224","DOIUrl":null,"url":null,"abstract":"<div><div>To strengthen the management and protection of soil water resources in the Yellow River source area(SRYR), this study conducted a quantitative analysis of the infiltration of soil water in alpine meadows. Meanwhile, the recharge source and mode of soil water in the SRYR were analyzed. The results indicated that both piston flow mode and priority flow mode were present, with the piston flow mode being predominant. The contributions of priority flow mode to deep soil water in different parts of the SRYR were as follows: South &gt; West &gt; North &gt; East. The contributions of piston flow mode to deep soil water were as follows: East &gt; North &gt; West &gt; South. In the heavy ablation period in 2021, precipitation was identified as the primary recharge source of soil water in the SRYR. The contribution rates of precipitation to soil water decreased with the increase in soil depth. The contribution rate of precipitation to soil water on the sunny slope was slightly higher than that on the shady slope. Different vegetation types had obvious effects on the recharge proportions of soil water. In addition, the contribution rates of precipitation to soil water decreased with the increase in altitude, while the contribution rates of ground ice increased with the increase in altitude. This study can provide theoretical support for soil water management and protection in the SRYR, which is conducive to the sustainable development of soil water resources.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"455 ","pages":"Article 117224"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001670612500062X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To strengthen the management and protection of soil water resources in the Yellow River source area(SRYR), this study conducted a quantitative analysis of the infiltration of soil water in alpine meadows. Meanwhile, the recharge source and mode of soil water in the SRYR were analyzed. The results indicated that both piston flow mode and priority flow mode were present, with the piston flow mode being predominant. The contributions of priority flow mode to deep soil water in different parts of the SRYR were as follows: South > West > North > East. The contributions of piston flow mode to deep soil water were as follows: East > North > West > South. In the heavy ablation period in 2021, precipitation was identified as the primary recharge source of soil water in the SRYR. The contribution rates of precipitation to soil water decreased with the increase in soil depth. The contribution rate of precipitation to soil water on the sunny slope was slightly higher than that on the shady slope. Different vegetation types had obvious effects on the recharge proportions of soil water. In addition, the contribution rates of precipitation to soil water decreased with the increase in altitude, while the contribution rates of ground ice increased with the increase in altitude. This study can provide theoretical support for soil water management and protection in the SRYR, which is conducive to the sustainable development of soil water resources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
期刊最新文献
Quantitative evaluation of carbon dioxide emissions from the subsoils of volcanic and non-volcanic ash soils in temperate forest ecosystems Evaluation and improvement of spatiotemporal estimation and transferability of multi-layer and profile soil moisture in the Qinghai Lake and Heihe River basins using multi-strategy constraints Effects of tree fall on soil Collembola: Disentangling the role of gap formation and deadwood addition Infiltration mechanism and source of soil water in alpine meadows based on stable isotope tracing Deep-rooted perennials alter microbial respiration and chemical composition of carbon in density fractions along soil depth profiles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1