{"title":"Soil-bioengineering to stabilize gravel roadside slopes in the steep Hyrcanian Forests of Northern Iran","authors":"Soghra Keybondori , Ehsan Abdi , Azade Deljouei , Alessio Cislaghi , Zahed Shakeri , Vahid Etemad","doi":"10.1016/j.ecoleng.2025.107569","DOIUrl":null,"url":null,"abstract":"<div><div>Soil-bioengineering techniques for stabilizing road cut and fill slopes based on indicator herbaceous and woody species in the Hyrcanian Forests of Northern Iran effectively reduce shallow landslide occurrences and improve overall slope stability. This study assessed the role of roots in stabilizing shallow soil layers by measuring the root biomechanical properties and root distribution of 13 indicator species, from cut and fill slopes. Our study identified <em>Athyrium filix-femina</em> and <em>Pteris cretica</em> as the most effective species for slope stabilization on cut slopes, providing root reinforcement values of 4538 Pa and 4513 Pa, respectively, and reducing slope instability by up to 18 %. On fill slopes, <em>Sambucus ebulus</em> and <em>Phyllitis scolopendrium</em> showed significant root reinforcement potential, reducing slope instability by up to 17 % and 18 %, respectively. Root systems of these species were primarily concentrated in the upper 0.1 m to 0.2 m of soil, providing simultaneously soil reinforcement and erosion control. Findings indicate that in the Hyrcanian Forest, where favorable climate conditions prevail, native pioneer species are particularly effective for slope stabilization, especially in areas without natural vegetation. Over time, this approach can restore disturbed areas, enhance biodiversity, and improve forest health. As a sustainable alternative to traditional engineering methods, soil-bioengineering offers forest managers a practical solution for reducing landslide risks while fostering ecosystem resilience. While these results highlighted the potential of herbaceous vegetation in mitigating slope failures, soil type and local climate may influence their effectiveness. Consequently, site-specific applications and further research needed to optimize vegetation selection for long-term slope stability. This study provided a framework for integrating native plants into soil-bioengineering techniques for forest road management, promoting environmental sustainability and ecosystem resilience.</div></div>","PeriodicalId":11490,"journal":{"name":"Ecological Engineering","volume":"214 ","pages":"Article 107569"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925857425000576","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Soil-bioengineering techniques for stabilizing road cut and fill slopes based on indicator herbaceous and woody species in the Hyrcanian Forests of Northern Iran effectively reduce shallow landslide occurrences and improve overall slope stability. This study assessed the role of roots in stabilizing shallow soil layers by measuring the root biomechanical properties and root distribution of 13 indicator species, from cut and fill slopes. Our study identified Athyrium filix-femina and Pteris cretica as the most effective species for slope stabilization on cut slopes, providing root reinforcement values of 4538 Pa and 4513 Pa, respectively, and reducing slope instability by up to 18 %. On fill slopes, Sambucus ebulus and Phyllitis scolopendrium showed significant root reinforcement potential, reducing slope instability by up to 17 % and 18 %, respectively. Root systems of these species were primarily concentrated in the upper 0.1 m to 0.2 m of soil, providing simultaneously soil reinforcement and erosion control. Findings indicate that in the Hyrcanian Forest, where favorable climate conditions prevail, native pioneer species are particularly effective for slope stabilization, especially in areas without natural vegetation. Over time, this approach can restore disturbed areas, enhance biodiversity, and improve forest health. As a sustainable alternative to traditional engineering methods, soil-bioengineering offers forest managers a practical solution for reducing landslide risks while fostering ecosystem resilience. While these results highlighted the potential of herbaceous vegetation in mitigating slope failures, soil type and local climate may influence their effectiveness. Consequently, site-specific applications and further research needed to optimize vegetation selection for long-term slope stability. This study provided a framework for integrating native plants into soil-bioengineering techniques for forest road management, promoting environmental sustainability and ecosystem resilience.
期刊介绍:
Ecological engineering has been defined as the design of ecosystems for the mutual benefit of humans and nature. The journal is meant for ecologists who, because of their research interests or occupation, are involved in designing, monitoring, or restoring ecosystems, and can serve as a bridge between ecologists and engineers.
Specific topics covered in the journal include: habitat reconstruction; ecotechnology; synthetic ecology; bioengineering; restoration ecology; ecology conservation; ecosystem rehabilitation; stream and river restoration; reclamation ecology; non-renewable resource conservation. Descriptions of specific applications of ecological engineering are acceptable only when situated within context of adding novelty to current research and emphasizing ecosystem restoration. We do not accept purely descriptive reports on ecosystem structures (such as vegetation surveys), purely physical assessment of materials that can be used for ecological restoration, small-model studies carried out in the laboratory or greenhouse with artificial (waste)water or crop studies, or case studies on conventional wastewater treatment and eutrophication that do not offer an ecosystem restoration approach within the paper.