Electrochemical correlative microscopy: Discovering insights into structure–reactivity relationships for electrochemical energy conversion and storage

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Current Opinion in Electrochemistry Pub Date : 2025-02-01 DOI:10.1016/j.coelec.2025.101666
Samuel F. Wenzel , Roberto García-Carrillo , Hang Ren
{"title":"Electrochemical correlative microscopy: Discovering insights into structure–reactivity relationships for electrochemical energy conversion and storage","authors":"Samuel F. Wenzel ,&nbsp;Roberto García-Carrillo ,&nbsp;Hang Ren","doi":"10.1016/j.coelec.2025.101666","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical correlative microscopy involves the pairing of electrochemical measurements with one or multiple orthogonal microscopic techniques. By integrating electrochemical measurements, especially scanning electrochemical probe microscopies (SEPMs), with correlative optical microscopy, spectroscopy, or electron microscopies, rich information complimentary to the electrochemical measurement can be obtained. This information can reveal detailed structure–property–activity relationships at electrochemical interfaces. Additionally, they can showcase visualizations of electrochemical phase transitions or mechanisms and assist in high-throughput synthesis and screening of materials for various electrochemical applications. In this perspective, we will use a few examples highlighting advances in electrochemical correlative microscopy over the past two years, focusing on the theme involving electrochemical energy storage and conversion. We anticipate new fundamental understanding of electrochemical interfaces will be elucidated through multitechnique platforms, and the outlook of future development of electrochemical correlative microscopy will be discussed.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"50 ","pages":"Article 101666"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910325000250","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical correlative microscopy involves the pairing of electrochemical measurements with one or multiple orthogonal microscopic techniques. By integrating electrochemical measurements, especially scanning electrochemical probe microscopies (SEPMs), with correlative optical microscopy, spectroscopy, or electron microscopies, rich information complimentary to the electrochemical measurement can be obtained. This information can reveal detailed structure–property–activity relationships at electrochemical interfaces. Additionally, they can showcase visualizations of electrochemical phase transitions or mechanisms and assist in high-throughput synthesis and screening of materials for various electrochemical applications. In this perspective, we will use a few examples highlighting advances in electrochemical correlative microscopy over the past two years, focusing on the theme involving electrochemical energy storage and conversion. We anticipate new fundamental understanding of electrochemical interfaces will be elucidated through multitechnique platforms, and the outlook of future development of electrochemical correlative microscopy will be discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Electrochemistry
Current Opinion in Electrochemistry Chemistry-Analytical Chemistry
CiteScore
14.00
自引率
5.90%
发文量
272
审稿时长
73 days
期刊介绍: The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner: 1.The views of experts on current advances in electrochemistry in a clear and readable form. 2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle: • Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •
期刊最新文献
Editorial Board In-situ spectroelectrochemical analysis for understanding photophysical properties of halide perovskite nanocrystals Throwing Light on Synthetic Molecular Photoelectrocatalysis (Part II): selected recent transformations of organic compounds and a future perspective in organic synthesis Advances in electro-optical methods for monitoring confined spaces Atomistic simulations of heterogeneous electrocatalysis at the center of sustainable carbon feedstocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1