Peng Wan , Hongyuan Xu , Ruicheng Cao , Xuan Liu , Yifeng Xia , Ana Xu , Minmin Yuan , Hong Jin , Hui Xu
{"title":"A hierarchically porous CoS2-NiS2 heterojunction for high-performance lithium sulfur batteries","authors":"Peng Wan , Hongyuan Xu , Ruicheng Cao , Xuan Liu , Yifeng Xia , Ana Xu , Minmin Yuan , Hong Jin , Hui Xu","doi":"10.1016/j.jcis.2025.02.084","DOIUrl":null,"url":null,"abstract":"<div><div>The commercial development of lithium-sulfur batteries (LSBs) has been significantly hindered by the “shuttle effect” and the slow redox kinetics of lithium polysulfides (LiPSs). To solve these problems, researchers have designed a variety of catalysts for the conversion of LiPSs. However, the multi-step lithium polysulfide conversion process is difficult to be effectively solved by a single-function catalyst. In this study, a novel hollow nanocage composite CoS<sub>2</sub>/NiS<sub>2</sub> with heterogeneous interfaces (CoS<sub>2</sub>-NiS<sub>2</sub>) is designed to dual modify the cathode host and separator. These CoS<sub>2</sub>-NiS<sub>2</sub> heterojunctions can enhance the trapping ability of LiPSs and improve the wettability, thereby mitigating the shuttling of LiPSs. Besides, the CoS<sub>2</sub>-NiS<sub>2</sub> heterogeneous interface exhibits a strong internal electric field, which effectively enhances the electronic conductivity of the composites. Moreover, this strong electric field at the CoS<sub>2</sub>-NiS<sub>2</sub> heterojunctions offers excellent catalytic ability for sulfur reduction so that can remarkably promote the conversion of LiPSs. Due to these multi-functional characteristics, the CoS<sub>2</sub>-NiS<sub>2</sub> nano-composite demonstrates excellent adsorption and catalytic properties. The as-obtained battery achieves a high initial specific capacity of 1037.4 mAh g<sup>−1</sup> and a low decay rate of 0.047 % per-cycle. This study offers a comprehensive understanding of interfacial catalytic mechanisms and their impact on sulfur reaction kinetics, particularly for binary metallic-compounds heterojunctions.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"687 ","pages":"Pages 599-606"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725004382","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The commercial development of lithium-sulfur batteries (LSBs) has been significantly hindered by the “shuttle effect” and the slow redox kinetics of lithium polysulfides (LiPSs). To solve these problems, researchers have designed a variety of catalysts for the conversion of LiPSs. However, the multi-step lithium polysulfide conversion process is difficult to be effectively solved by a single-function catalyst. In this study, a novel hollow nanocage composite CoS2/NiS2 with heterogeneous interfaces (CoS2-NiS2) is designed to dual modify the cathode host and separator. These CoS2-NiS2 heterojunctions can enhance the trapping ability of LiPSs and improve the wettability, thereby mitigating the shuttling of LiPSs. Besides, the CoS2-NiS2 heterogeneous interface exhibits a strong internal electric field, which effectively enhances the electronic conductivity of the composites. Moreover, this strong electric field at the CoS2-NiS2 heterojunctions offers excellent catalytic ability for sulfur reduction so that can remarkably promote the conversion of LiPSs. Due to these multi-functional characteristics, the CoS2-NiS2 nano-composite demonstrates excellent adsorption and catalytic properties. The as-obtained battery achieves a high initial specific capacity of 1037.4 mAh g−1 and a low decay rate of 0.047 % per-cycle. This study offers a comprehensive understanding of interfacial catalytic mechanisms and their impact on sulfur reaction kinetics, particularly for binary metallic-compounds heterojunctions.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies