Xiaolu Chen, Shengnan Wu, Nan Li, Xiaokun Qian, Liu Liu, Sailing He
{"title":"Temperature-compensated magnetic field sensor based on hollow core bragg fiber fabry-perot interferometer","authors":"Xiaolu Chen, Shengnan Wu, Nan Li, Xiaokun Qian, Liu Liu, Sailing He","doi":"10.1007/s00340-025-08417-y","DOIUrl":null,"url":null,"abstract":"<div><p>A temperature-compensated magnetic field sensor based on a hollow core Bragg fiber (HCBF) Fabry-Perot interferometer (FPI) is proposed. The two ends of the HCBF are fused with optical single-mode fibers (SMF) and adhered to magnetostrictive rods. The temperature and magnetic field response can be demodulated by 2 × 2 sensitivity matrix method, achieving multiparametric demodulation of dual parameters. Experimental results indicate that the error rate of demodulated magnetic field is only 1.9%, while the error rate of demodulated temperature is only 0.8%. The ease of fabrication, high accuracy and temperature compensation suggest that the proposed fiber sensor is suitable for practical magnetic field sensing applications.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"131 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00340-025-08417-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-025-08417-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A temperature-compensated magnetic field sensor based on a hollow core Bragg fiber (HCBF) Fabry-Perot interferometer (FPI) is proposed. The two ends of the HCBF are fused with optical single-mode fibers (SMF) and adhered to magnetostrictive rods. The temperature and magnetic field response can be demodulated by 2 × 2 sensitivity matrix method, achieving multiparametric demodulation of dual parameters. Experimental results indicate that the error rate of demodulated magnetic field is only 1.9%, while the error rate of demodulated temperature is only 0.8%. The ease of fabrication, high accuracy and temperature compensation suggest that the proposed fiber sensor is suitable for practical magnetic field sensing applications.
期刊介绍:
Features publication of experimental and theoretical investigations in applied physics
Offers invited reviews in addition to regular papers
Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more
94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again
Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field.
In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.