Enhanced Anticancer Effects Through Combined Therapeutic Model of Macrophage Polarization and Cancer Cell Apoptosis by Multifunctional Lipid Nanocomposites

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of biomedical materials research. Part A Pub Date : 2025-02-19 DOI:10.1002/jbm.a.37886
Kamonlatth Rodponthukwaji, Ladawan Khowawisetsut, Nathachit Limjunyawong, Natsuda Kunwong, Kongpop Duangchan, Sirinapa Sripinitchai, Sith Sathornsumetee, Tam Nguyen, Chatchawan Srisawat, Primana Punnakitikashem
{"title":"Enhanced Anticancer Effects Through Combined Therapeutic Model of Macrophage Polarization and Cancer Cell Apoptosis by Multifunctional Lipid Nanocomposites","authors":"Kamonlatth Rodponthukwaji,&nbsp;Ladawan Khowawisetsut,&nbsp;Nathachit Limjunyawong,&nbsp;Natsuda Kunwong,&nbsp;Kongpop Duangchan,&nbsp;Sirinapa Sripinitchai,&nbsp;Sith Sathornsumetee,&nbsp;Tam Nguyen,&nbsp;Chatchawan Srisawat,&nbsp;Primana Punnakitikashem","doi":"10.1002/jbm.a.37886","DOIUrl":null,"url":null,"abstract":"<p>Although the mono-anticancer therapy approach particularly directly targeting tumors is still common, this conventional method is generally deemed not effective and insufficient. In tumor microenvironment (TME), tumor-associated macrophages (TAMs, referred to as M2-polarized) play a crucial role in creating an immunosuppressive TME, contributing to various pro-tumorigenic effects. A promising strategy to inhibit tumor growth involves re-educating M2 macrophages into tumoricidal macrophages (M1). Therefore, combining macrophage reprogramming with cancer cell death induction in a single modality may offer synergistic benefits in cancer therapy. Here, we engineered a lipid-based delivery platform capable of co-delivering resiquimod (R848) and polyinosinic: polycytidylic acid (PIC). R848 in our nanosystem effectively triggered M2-to-M1 repolarization, as evidenced by the upregulation of M1 marker genes (<i>TNF</i>, <i>IL6</i>), the release of proinflammatory cytokines (TNF-α and IL-6), and the downregulation of the M2 marker gene, <i>MRC1</i>. On the other hand, the presence of PIC increased caspase-3/7 activity leading to cancer cell death through the apoptotic pathway. This nanocarrier system established a multifunctional platform to enhance the anticancer effect. The synergistic effect of repolarized macrophages in combination with the induction of apoptosis, facilitated by our nanomedicine, was evident in a co-culture system of macrophage and cancer cells, showing a significant increase in cancer cell death compared to individual treatments. These findings attractively demonstrated the potential of our multifunctional lipid nanoparticles as therapeutic agents for anticancer treatment by modulating the tumor immune microenvironment and simultaneously increasing cancer cell cytotoxicity.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37886","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37886","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Although the mono-anticancer therapy approach particularly directly targeting tumors is still common, this conventional method is generally deemed not effective and insufficient. In tumor microenvironment (TME), tumor-associated macrophages (TAMs, referred to as M2-polarized) play a crucial role in creating an immunosuppressive TME, contributing to various pro-tumorigenic effects. A promising strategy to inhibit tumor growth involves re-educating M2 macrophages into tumoricidal macrophages (M1). Therefore, combining macrophage reprogramming with cancer cell death induction in a single modality may offer synergistic benefits in cancer therapy. Here, we engineered a lipid-based delivery platform capable of co-delivering resiquimod (R848) and polyinosinic: polycytidylic acid (PIC). R848 in our nanosystem effectively triggered M2-to-M1 repolarization, as evidenced by the upregulation of M1 marker genes (TNF, IL6), the release of proinflammatory cytokines (TNF-α and IL-6), and the downregulation of the M2 marker gene, MRC1. On the other hand, the presence of PIC increased caspase-3/7 activity leading to cancer cell death through the apoptotic pathway. This nanocarrier system established a multifunctional platform to enhance the anticancer effect. The synergistic effect of repolarized macrophages in combination with the induction of apoptosis, facilitated by our nanomedicine, was evident in a co-culture system of macrophage and cancer cells, showing a significant increase in cancer cell death compared to individual treatments. These findings attractively demonstrated the potential of our multifunctional lipid nanoparticles as therapeutic agents for anticancer treatment by modulating the tumor immune microenvironment and simultaneously increasing cancer cell cytotoxicity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of biomedical materials research. Part A
Journal of biomedical materials research. Part A 工程技术-材料科学:生物材料
CiteScore
10.40
自引率
2.00%
发文量
135
审稿时长
3.6 months
期刊介绍: The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device. The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.
期刊最新文献
Issue Information Enhanced Anticancer Effects Through Combined Therapeutic Model of Macrophage Polarization and Cancer Cell Apoptosis by Multifunctional Lipid Nanocomposites Correction to “Resorbable Engineered Barrier Membranes for Oral Surgery Applications” A Simple, Cost-Effective Microfluidic Device Using a 3D Cross-Flow T-Junction for Producing Decellularized Extracellular Matrix-Derived Microcarriers Amniotic Membrane-Derived Extracellular Matrix for Developing a Cost-Effective Xenofree Hepatocellular Carcinoma Organoid Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1