Deformation-tolerant, wireless-charging microbatteries for seamlessly integrated omnidirectional stretchable electronics
IF 11.7 1区 综合性期刊Q1 MULTIDISCIPLINARY SCIENCESScience AdvancesPub Date : 2025-02-19
Ying Wang, Yang Zhao, Li Yu, Jinguo Lin, Chunlong Dai, Bing Lu, Xiangyang Li, Xuting Jin, Chang Gao, Feng Liu, Lan Jiang, Liangti Qu
{"title":"Deformation-tolerant, wireless-charging microbatteries for seamlessly integrated omnidirectional stretchable electronics","authors":"Ying Wang, Yang Zhao, Li Yu, Jinguo Lin, Chunlong Dai, Bing Lu, Xiangyang Li, Xuting Jin, Chang Gao, Feng Liu, Lan Jiang, Liangti Qu","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Wireless-charging in-plane microbatteries (MBs) with conformal shape and high-capacity hold substantial promise in advancing the practical applications of complexly configured electronic devices. However, integrating these MBs seamlessly with flexible electronic system remains a challenge as it requires a rational structure design and reasonable materials engineering for the micropower system, ensuring both high compatibility and robust mechanical stability. Here, we present stretchable and wireless-charging dual-plating MBs that integrate seamlessly into circuits through an omnidirectional stretch-contraction strategy coupled with mask-assisted printing. The strain-induced folding structures and no active-material design endow the wireless-charging MBs with reliable deformation-tolerant capabilities, which can sustain ~200% omnidirectional strains and have advantages of an order of magnitude in terms of power and energy densities, compared to the existing in-plane MBs. With the exceptional compatible and elastic properties, a wirelessly charging stretchable display integrated circuit and even intelligent electronic skin are achieved, capable of mimicking human touch to sense the weight, temperature, and shape of objects.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 8","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads6892","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads6892","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless-charging in-plane microbatteries (MBs) with conformal shape and high-capacity hold substantial promise in advancing the practical applications of complexly configured electronic devices. However, integrating these MBs seamlessly with flexible electronic system remains a challenge as it requires a rational structure design and reasonable materials engineering for the micropower system, ensuring both high compatibility and robust mechanical stability. Here, we present stretchable and wireless-charging dual-plating MBs that integrate seamlessly into circuits through an omnidirectional stretch-contraction strategy coupled with mask-assisted printing. The strain-induced folding structures and no active-material design endow the wireless-charging MBs with reliable deformation-tolerant capabilities, which can sustain ~200% omnidirectional strains and have advantages of an order of magnitude in terms of power and energy densities, compared to the existing in-plane MBs. With the exceptional compatible and elastic properties, a wirelessly charging stretchable display integrated circuit and even intelligent electronic skin are achieved, capable of mimicking human touch to sense the weight, temperature, and shape of objects.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.