Decreased miR-128-3p in serum exosomes from polycystic ovary syndrome induces ferroptosis in granulosa cells via the p38/JNK/SLC7A11 axis through targeting CSF1.

IF 6.1 2区 生物学 Q1 CELL BIOLOGY Cell Death Discovery Pub Date : 2025-02-18 DOI:10.1038/s41420-025-02331-0
Yanqiu Lv, Shengzhong Han, Fuliang Sun, Yuyang Zhang, Xinglin Qu, Hao Li, Weiyu Gu, Qinglong Xu, Shunfa Yao, Xuan Chen, Yi Jin
{"title":"Decreased miR-128-3p in serum exosomes from polycystic ovary syndrome induces ferroptosis in granulosa cells via the p38/JNK/SLC7A11 axis through targeting CSF1.","authors":"Yanqiu Lv, Shengzhong Han, Fuliang Sun, Yuyang Zhang, Xinglin Qu, Hao Li, Weiyu Gu, Qinglong Xu, Shunfa Yao, Xuan Chen, Yi Jin","doi":"10.1038/s41420-025-02331-0","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing evidence suggests that non-coding small RNAs (miRNAs) carried by exosomes (EXOs) play important roles in the development and treatment of polycystic ovary syndrome (PCOS). In this study, we demonstrate that PCOS mouse serum-derived EXOs promote granulosa cells (GCs) ferroptosis, and induce the occurrence of a PCOS-like phenotype in vivo. Notably, EXO miRNA sequencing combined with in vitro gain- and loss-of-function assays revealed that miR-128-3p, which is absent in the serum-derived EXOs of mice with PCOS, regulates lipid peroxidation and GC sensitivity to ferroptosis inducers. Mechanistically, overexpression of CSF1, a direct target of miR-128-3p, reversed the anti-ferroptotic effect of miR-128-3p. Conversely, ferroptosis induction was mitigated in CSF1-downregulated GCs. Furthermore, we demonstrated that miR-128-3p inhibition activates the p38/JNK pathway via CSF1, leading to NRF2-mediated down-regulation of SLC7A11 transcription, which triggers GC iron overload. Moreover, intrathecal miR-128-3p AgomiR injection into mouse ovaries ameliorated PCOS-like characteristics and restored fertility in letrozole-induced mice. The study reveals the pathological mechanisms of PCOS based on circulating EXOs and provides the first evidence of the roles of miR-128-3p and CSF1 in ovarian GCs. This discovery is expected to provide promising therapeutic targets for the treatment of PCOS.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"64"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02331-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing evidence suggests that non-coding small RNAs (miRNAs) carried by exosomes (EXOs) play important roles in the development and treatment of polycystic ovary syndrome (PCOS). In this study, we demonstrate that PCOS mouse serum-derived EXOs promote granulosa cells (GCs) ferroptosis, and induce the occurrence of a PCOS-like phenotype in vivo. Notably, EXO miRNA sequencing combined with in vitro gain- and loss-of-function assays revealed that miR-128-3p, which is absent in the serum-derived EXOs of mice with PCOS, regulates lipid peroxidation and GC sensitivity to ferroptosis inducers. Mechanistically, overexpression of CSF1, a direct target of miR-128-3p, reversed the anti-ferroptotic effect of miR-128-3p. Conversely, ferroptosis induction was mitigated in CSF1-downregulated GCs. Furthermore, we demonstrated that miR-128-3p inhibition activates the p38/JNK pathway via CSF1, leading to NRF2-mediated down-regulation of SLC7A11 transcription, which triggers GC iron overload. Moreover, intrathecal miR-128-3p AgomiR injection into mouse ovaries ameliorated PCOS-like characteristics and restored fertility in letrozole-induced mice. The study reveals the pathological mechanisms of PCOS based on circulating EXOs and provides the first evidence of the roles of miR-128-3p and CSF1 in ovarian GCs. This discovery is expected to provide promising therapeutic targets for the treatment of PCOS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
期刊最新文献
Comparative microRNA signatures based on liquid biopsy to identify lymph node metastasis in T1 colorectal cancer patients undergoing upfront surgery or endoscopic resection. A new understanding of Acanthamoeba castellanii: dispelling the role of bacterial pore-forming toxins in cyst formation and amoebicidal actions. Decreased miR-128-3p in serum exosomes from polycystic ovary syndrome induces ferroptosis in granulosa cells via the p38/JNK/SLC7A11 axis through targeting CSF1. Long-term adaptation of lymphoma cell lines to hypoxia is mediated by diverse molecular mechanisms that are targetable with specific inhibitors. Syk inhibitor attenuates lupus in FcγRIIb-/- mice through the Inhibition of DNA extracellular traps from macrophages and neutrophils via p38MAPK-dependent pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1