ADAMTS5-specific gapmer release from an albumin biomolecular assembly and cartilage internalization triggered by ultrasound.

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY Drug Delivery Pub Date : 2025-12-01 Epub Date: 2025-02-18 DOI:10.1080/10717544.2025.2464921
Marwa Elkhashab, Goncalo Barreto, Maxime Fauconnier, Yohann Le Bourlout, Laura B Creemers, Heikki J Nieminen, Kenneth A Howard
{"title":"ADAMTS5-specific gapmer release from an albumin biomolecular assembly and cartilage internalization triggered by ultrasound.","authors":"Marwa Elkhashab, Goncalo Barreto, Maxime Fauconnier, Yohann Le Bourlout, Laura B Creemers, Heikki J Nieminen, Kenneth A Howard","doi":"10.1080/10717544.2025.2464921","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Antisense oligonucleotides (ASOs) have reached the clinic; however, they lack tissue specificity. Albumin is a plasma-abundant macromolecule that has been shown to accumulate in inflamed tissues. In this work, we have designed a recombinant human albumin (rHA)-based biomolecular assembly incorporating a DNase-resistant phosphorothioate-based complementary oligonucleotide (cODN) and an anti-ADAMTS5 ASO for potential delivery to inflamed sites. Ultrasound (US) was used to trigger ASO release from the assembly and enhance internalization into articular cartilage.</p><p><strong>Methods: </strong>A phosphorothioate cODN was conjugated to rHA through a maleimide cross-linker after which, a therapeutic ADAMTS5-specific gapmer ASO was annealed to the cODN. ASO release was assessed after exposing the biomolecular assembly to different US conditions using an US-actuated medical needle operating at 32.2 kHz. Gene silencing efficiency of US-treated anti-ADAMTS5 ASO was assessed in human primary chondrocytes isolated from osteoarthritic patients. US-mediated ASO penetration into articular cartilage was assessed on <i>ex vivo</i> bovine articular cartilage.</p><p><strong>Results: </strong>ASO release was observed after exposure to US waves in continuous mode conditions that did not compromise ASO gene silencing efficiency in human chondrocytes. Furthermore, US increased ASO internalization into bovine articular cartilage after 30 min of application without detrimental effects on chondrocyte viability.</p><p><strong>Conclusion: </strong>A medical needle driven by continuous US waves at 32.2 kHz has the capability of disassembling a duplex oligonucleotide and enhancing released ASOs internalization into articular cartilage. This work offers the potential delivery and the local triggered release of ASOs at the surface of articular cartilage providing potential benefits for the treatment of diverse cartilage pathologies.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"32 1","pages":"2464921"},"PeriodicalIF":6.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2025.2464921","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Antisense oligonucleotides (ASOs) have reached the clinic; however, they lack tissue specificity. Albumin is a plasma-abundant macromolecule that has been shown to accumulate in inflamed tissues. In this work, we have designed a recombinant human albumin (rHA)-based biomolecular assembly incorporating a DNase-resistant phosphorothioate-based complementary oligonucleotide (cODN) and an anti-ADAMTS5 ASO for potential delivery to inflamed sites. Ultrasound (US) was used to trigger ASO release from the assembly and enhance internalization into articular cartilage.

Methods: A phosphorothioate cODN was conjugated to rHA through a maleimide cross-linker after which, a therapeutic ADAMTS5-specific gapmer ASO was annealed to the cODN. ASO release was assessed after exposing the biomolecular assembly to different US conditions using an US-actuated medical needle operating at 32.2 kHz. Gene silencing efficiency of US-treated anti-ADAMTS5 ASO was assessed in human primary chondrocytes isolated from osteoarthritic patients. US-mediated ASO penetration into articular cartilage was assessed on ex vivo bovine articular cartilage.

Results: ASO release was observed after exposure to US waves in continuous mode conditions that did not compromise ASO gene silencing efficiency in human chondrocytes. Furthermore, US increased ASO internalization into bovine articular cartilage after 30 min of application without detrimental effects on chondrocyte viability.

Conclusion: A medical needle driven by continuous US waves at 32.2 kHz has the capability of disassembling a duplex oligonucleotide and enhancing released ASOs internalization into articular cartilage. This work offers the potential delivery and the local triggered release of ASOs at the surface of articular cartilage providing potential benefits for the treatment of diverse cartilage pathologies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
期刊最新文献
Incorporation of doxorubicin into plant-derived nanovesicles: process monitoring and activity assessment. A systematic review of liposomal nanofibrous scaffolds as a drug delivery system: a decade of progress in controlled release and therapeutic efficacy. Biomimetic peptide conjugates as emerging strategies for controlled release from protein-based materials. In vivo antitumor activity of PHT-427 inhibitor-loaded polymeric nanoparticles in head and neck squamous cell carcinoma. Exploring the efficacy and constraints of platinum nanoparticles as adjuvant therapy in silicosis management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1