Jinxuan Xie, Tong Zhou, Yu Chen, Yi Zhou, Bo Jiang, Jing Zhang, Zhenjun Wang, Wentao Li, Han Sun, Xuyang Zhu, Xiaoshi Li, Tianyu Yang, Yan Su
{"title":"A MEMS traveling-wave micromotor-based miniature gyrocompass.","authors":"Jinxuan Xie, Tong Zhou, Yu Chen, Yi Zhou, Bo Jiang, Jing Zhang, Zhenjun Wang, Wentao Li, Han Sun, Xuyang Zhu, Xiaoshi Li, Tianyu Yang, Yan Su","doi":"10.1038/s41378-025-00868-9","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional gyrocompasses, while capable of providing autonomous directional guidance and path correction, face limitations in widespread applications due to their large size, making them unsuitable for compact devices. Microelectromechanical system (MEMS) gyrocompasses offer a promising alternative for miniaturization. However, current MEMS gyrocompasses require the integration of motor rotation modulation technology to achieve high-precision north-finding, whereas conventional motors in previous research introduce large volume and residual magnetism, thus undermining their size advantage. Here, we innovatively propose a miniature MEMS gyrocompass based on a MEMS traveling-wave micromotor, featuring the first integration of a chip-scale rotational actuator and combined with a precise multi-position braking control system, enabling high accuracy and fast north-finding. The proposed gyrocompass made significant advancements, reducing its size to 50 × 42.5 × 24.5 mm³ and achieving an azimuth accuracy of 0.199° within 2 min, which is half the volume of the smallest existing similar devices while offering twice the performance. These improvements indicate that the proposed gyrocompass is suitable for applications in indoor industrial robotics, autonomous driving, and other related fields requiring precise directional guidance.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"27"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00868-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional gyrocompasses, while capable of providing autonomous directional guidance and path correction, face limitations in widespread applications due to their large size, making them unsuitable for compact devices. Microelectromechanical system (MEMS) gyrocompasses offer a promising alternative for miniaturization. However, current MEMS gyrocompasses require the integration of motor rotation modulation technology to achieve high-precision north-finding, whereas conventional motors in previous research introduce large volume and residual magnetism, thus undermining their size advantage. Here, we innovatively propose a miniature MEMS gyrocompass based on a MEMS traveling-wave micromotor, featuring the first integration of a chip-scale rotational actuator and combined with a precise multi-position braking control system, enabling high accuracy and fast north-finding. The proposed gyrocompass made significant advancements, reducing its size to 50 × 42.5 × 24.5 mm³ and achieving an azimuth accuracy of 0.199° within 2 min, which is half the volume of the smallest existing similar devices while offering twice the performance. These improvements indicate that the proposed gyrocompass is suitable for applications in indoor industrial robotics, autonomous driving, and other related fields requiring precise directional guidance.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.