A MEMS traveling-wave micromotor-based miniature gyrocompass.

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Microsystems & Nanoengineering Pub Date : 2025-02-18 DOI:10.1038/s41378-025-00868-9
Jinxuan Xie, Tong Zhou, Yu Chen, Yi Zhou, Bo Jiang, Jing Zhang, Zhenjun Wang, Wentao Li, Han Sun, Xuyang Zhu, Xiaoshi Li, Tianyu Yang, Yan Su
{"title":"A MEMS traveling-wave micromotor-based miniature gyrocompass.","authors":"Jinxuan Xie, Tong Zhou, Yu Chen, Yi Zhou, Bo Jiang, Jing Zhang, Zhenjun Wang, Wentao Li, Han Sun, Xuyang Zhu, Xiaoshi Li, Tianyu Yang, Yan Su","doi":"10.1038/s41378-025-00868-9","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional gyrocompasses, while capable of providing autonomous directional guidance and path correction, face limitations in widespread applications due to their large size, making them unsuitable for compact devices. Microelectromechanical system (MEMS) gyrocompasses offer a promising alternative for miniaturization. However, current MEMS gyrocompasses require the integration of motor rotation modulation technology to achieve high-precision north-finding, whereas conventional motors in previous research introduce large volume and residual magnetism, thus undermining their size advantage. Here, we innovatively propose a miniature MEMS gyrocompass based on a MEMS traveling-wave micromotor, featuring the first integration of a chip-scale rotational actuator and combined with a precise multi-position braking control system, enabling high accuracy and fast north-finding. The proposed gyrocompass made significant advancements, reducing its size to 50 × 42.5 × 24.5 mm³ and achieving an azimuth accuracy of 0.199° within 2 min, which is half the volume of the smallest existing similar devices while offering twice the performance. These improvements indicate that the proposed gyrocompass is suitable for applications in indoor industrial robotics, autonomous driving, and other related fields requiring precise directional guidance.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"27"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00868-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional gyrocompasses, while capable of providing autonomous directional guidance and path correction, face limitations in widespread applications due to their large size, making them unsuitable for compact devices. Microelectromechanical system (MEMS) gyrocompasses offer a promising alternative for miniaturization. However, current MEMS gyrocompasses require the integration of motor rotation modulation technology to achieve high-precision north-finding, whereas conventional motors in previous research introduce large volume and residual magnetism, thus undermining their size advantage. Here, we innovatively propose a miniature MEMS gyrocompass based on a MEMS traveling-wave micromotor, featuring the first integration of a chip-scale rotational actuator and combined with a precise multi-position braking control system, enabling high accuracy and fast north-finding. The proposed gyrocompass made significant advancements, reducing its size to 50 × 42.5 × 24.5 mm³ and achieving an azimuth accuracy of 0.199° within 2 min, which is half the volume of the smallest existing similar devices while offering twice the performance. These improvements indicate that the proposed gyrocompass is suitable for applications in indoor industrial robotics, autonomous driving, and other related fields requiring precise directional guidance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
期刊最新文献
A MEMS traveling-wave micromotor-based miniature gyrocompass. Comparative analysis of nanomechanical resonators: sensitivity, response time, and practical considerations in photothermal sensing. Inverted pyramid 3-axis silicon Hall-effect magnetic sensor with offset cancellation. Study of the protrusion of through-silicon vias in dual annealing-CMP processes for 3D integration. An ingestible bioimpedance sensing device for wireless monitoring of epithelial barriers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1