Enhancement of photocatalytic efficiency of copper oxide/zinc oxide-montmorillonite photocatalyst under visible light irradiation.

IF 7.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science and Technology of Advanced Materials Pub Date : 2025-02-21 eCollection Date: 2025-01-01 DOI:10.1080/14686996.2025.2469484
Chomponoot Suppaso, Nipaporn Pongkan, Sonchai Intachai, Wachiraya Rattanawongsa, Areebhorn Baoulan, Yusuke Yamauchi, Yusuke Asakura, Nithima Khaorapapong
{"title":"Enhancement of photocatalytic efficiency of copper oxide/zinc oxide-montmorillonite photocatalyst under visible light irradiation.","authors":"Chomponoot Suppaso, Nipaporn Pongkan, Sonchai Intachai, Wachiraya Rattanawongsa, Areebhorn Baoulan, Yusuke Yamauchi, Yusuke Asakura, Nithima Khaorapapong","doi":"10.1080/14686996.2025.2469484","DOIUrl":null,"url":null,"abstract":"<p><p>The formation of copper oxide and zinc oxide mixture in montmorillonite was conducted by the reaction of an aqueous dispersion of Cu<sup>2+</sup>/Zn<sup>2+</sup> exchanged montmorillonite and an aqueous solution of sodium hydroxide under hydrothermal treatment. The resulting product was characterized by X-ray diffraction, scanning and transmittance electron microscopies, as well as UV-visible and photoluminescence spectroscopies. The diffuse reflectance absorption spectra showed the absorption onsets due to copper oxide (885 nm) and zinc oxide (310 and 580 nm) in the product. The adsorption of methylene blue was fitted well by the Langmuir model with the maximum adsorption capacity of 454 mg⋅g<sup>-1</sup>. The thermodynamic studies revealed that the process is exothermic and spontaneous. The photocatalytic activity of the hybrid was assessed by the degradation of methylene blue in aqueous solution under visible light irradiation. The most active species in the photocatalytic process was hydroxyl radicals. The regenerated copper oxide/zinc oxide-montmorillonite was reused up to 5 cycles, the photodegradation efficiency dropped only 5% (from 94% to 89%), supporting the good stability of the photocatalyst. The result was in agreement with the advantages of the nanocomposite heterostructure and the unique nature of montmorillonite.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2469484"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905314/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2025.2469484","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The formation of copper oxide and zinc oxide mixture in montmorillonite was conducted by the reaction of an aqueous dispersion of Cu2+/Zn2+ exchanged montmorillonite and an aqueous solution of sodium hydroxide under hydrothermal treatment. The resulting product was characterized by X-ray diffraction, scanning and transmittance electron microscopies, as well as UV-visible and photoluminescence spectroscopies. The diffuse reflectance absorption spectra showed the absorption onsets due to copper oxide (885 nm) and zinc oxide (310 and 580 nm) in the product. The adsorption of methylene blue was fitted well by the Langmuir model with the maximum adsorption capacity of 454 mg⋅g-1. The thermodynamic studies revealed that the process is exothermic and spontaneous. The photocatalytic activity of the hybrid was assessed by the degradation of methylene blue in aqueous solution under visible light irradiation. The most active species in the photocatalytic process was hydroxyl radicals. The regenerated copper oxide/zinc oxide-montmorillonite was reused up to 5 cycles, the photodegradation efficiency dropped only 5% (from 94% to 89%), supporting the good stability of the photocatalyst. The result was in agreement with the advantages of the nanocomposite heterostructure and the unique nature of montmorillonite.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science and Technology of Advanced Materials
Science and Technology of Advanced Materials 工程技术-材料科学:综合
CiteScore
10.60
自引率
3.60%
发文量
52
审稿时长
4.8 months
期刊介绍: Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering. The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications. Of particular interest are research papers on the following topics: Materials informatics and materials genomics Materials for 3D printing and additive manufacturing Nanostructured/nanoscale materials and nanodevices Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications Materials for energy and environment, next-generation photovoltaics, and green technologies Advanced structural materials, materials for extreme conditions.
期刊最新文献
Formulation of catechol-containing adhesives for enhanced underwater bonding and workability. Advances in bioinspired polymer hydrogel systems with biomedical functionalities. Effect of cation side-chain structure on the physicochemical properties of pyrrolidinium-based electrolytes upon mixing with sodium salt. Enhancement of photocatalytic efficiency of copper oxide/zinc oxide-montmorillonite photocatalyst under visible light irradiation. Foreword to the focus issue: frontline research on biomaterials-based bioengineering for future therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1