Polyamine Metabolism is Dysregulated in COXFA4 Related Mitochondrial Disease.

IF 3.3 Q2 GENETICS & HEREDITY HGG Advances Pub Date : 2025-02-17 DOI:10.1016/j.xhgg.2025.100418
Jonathan Marquez, Stephen Viviano, Erika Beckman, Jenny Thies, Joshua Friedland-Little, Christina T Lam, Engin Deniz, Emily Shelkowitz
{"title":"Polyamine Metabolism is Dysregulated in COXFA4 Related Mitochondrial Disease.","authors":"Jonathan Marquez, Stephen Viviano, Erika Beckman, Jenny Thies, Joshua Friedland-Little, Christina T Lam, Engin Deniz, Emily Shelkowitz","doi":"10.1016/j.xhgg.2025.100418","DOIUrl":null,"url":null,"abstract":"<p><p>Most of the chemical energy that organisms rely on to support cellular function is generated through oxidative phosphorylation, a metabolic pathway in which electron donors, NADH and FADH, are oxidized through a series of successive steps to generate adenosine triphosphate. These redox reactions are orchestrated by a series of five protein complexes that sit within the mitochondrial membrane. Deficiency of cytochrome c oxidase, the fourth of these complexes, is a recognized cause of mitochondrial disease. COXFA4, encodes one of the protein subunits of cytochrome c oxidase and variants in COXFA4 have recently been reported in individuals with a range of symptoms. These can include feeding difficulties, poor growth, cardiomyopathy, Leigh or Leigh-like disease, and neurodevelopmental delay. Though these symptoms vary widely between individuals. Yet, a mechanistic understanding of the connection between COXFA4 loss and these varied disease manifestations is lacking. Using animal modeling in Xenopus, we explored the ramifications of coxfa4 loss of function on the early developing heart. We then conducted a hypothesis naive analysis of cellular gene expression in the context of COXFA4 deletion and discovered a downstream deficiency in the ornithine decarboxylase pathway. Small molecule-based modulation of the ornithine decarboxylase pathway in our model modified the extent of disease including improvement of cardiac function. Our findings point to a mechanism by which COXFA4 dysfunction leads to tissue specific disease.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100418"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2025.100418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Most of the chemical energy that organisms rely on to support cellular function is generated through oxidative phosphorylation, a metabolic pathway in which electron donors, NADH and FADH, are oxidized through a series of successive steps to generate adenosine triphosphate. These redox reactions are orchestrated by a series of five protein complexes that sit within the mitochondrial membrane. Deficiency of cytochrome c oxidase, the fourth of these complexes, is a recognized cause of mitochondrial disease. COXFA4, encodes one of the protein subunits of cytochrome c oxidase and variants in COXFA4 have recently been reported in individuals with a range of symptoms. These can include feeding difficulties, poor growth, cardiomyopathy, Leigh or Leigh-like disease, and neurodevelopmental delay. Though these symptoms vary widely between individuals. Yet, a mechanistic understanding of the connection between COXFA4 loss and these varied disease manifestations is lacking. Using animal modeling in Xenopus, we explored the ramifications of coxfa4 loss of function on the early developing heart. We then conducted a hypothesis naive analysis of cellular gene expression in the context of COXFA4 deletion and discovered a downstream deficiency in the ornithine decarboxylase pathway. Small molecule-based modulation of the ornithine decarboxylase pathway in our model modified the extent of disease including improvement of cardiac function. Our findings point to a mechanism by which COXFA4 dysfunction leads to tissue specific disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
期刊最新文献
Polyamine Metabolism is Dysregulated in COXFA4 Related Mitochondrial Disease. A proposed role for CDO1 in central nervous system development: Three children with rare missense variants and a neurological phenotype. Cardiovascular Disease-Associated Non-Coding Variants Disrupt GATA4-DNA Binding and Regulatory Functions. Families' experiences of receiving adult- and pediatric-onset genetic results. Multifaceted analysis of noncoding and coding de novo variants implicates NOTCH signaling pathway in tetralogy of Fallot in Chinese population.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1