Removal of polystyrene nanoplastics from urban treated wastewater by electrochemical oxidation

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL Separation and Purification Technology Pub Date : 2025-02-18 DOI:10.1016/j.seppur.2025.132139
Alejandro Pérez-López, Carmen M. Domínguez, Aurora Santos, Salvador Cotillas
{"title":"Removal of polystyrene nanoplastics from urban treated wastewater by electrochemical oxidation","authors":"Alejandro Pérez-López,&nbsp;Carmen M. Domínguez,&nbsp;Aurora Santos,&nbsp;Salvador Cotillas","doi":"10.1016/j.seppur.2025.132139","DOIUrl":null,"url":null,"abstract":"<div><div>This work investigates for the first time the removal of polystyrene nanoplastics (NPs) from synthetic urban treated wastewater by electrochemical oxidation with Boron-Doped Diamond (BDD). The influence of current density (10–100 mA cm<sup>−2</sup>) and initial pollutant concentration (20–100 mg L<sup>-1</sup>) was evaluated. Additionally, the effect of the anode material on NPs removal was studied, employing Mixed Metal Oxide (MMO) anodes. The process efficiency was assessed through Total Organic Carbon (TOC) reduction and acute toxicity tests using the <em>Aliivibrio fischeri</em> luminescent bacterium. Results demonstrate that BDD anodes achieve mineralisation rates exceeding 90 % at current densities above 50 mA cm<sup>−2</sup>, whereas MMO anodes exhibit significantly lower degradation. Due to competing reactions, such as oxygen evolution, the process efficiency decreases at higher current densities with BDD anodes. NPs removal occurs primarily by a mediated oxidation process involving electrochemically generated oxidants. After treatment, transmission electron microscopy (TEM) analysis reveals a progressive reduction in NPs size from 150 nm to 68 nm. Regarding toxicity analysis, acute toxicity can be eliminated by applying current densities above 50 mA cm<sup>−2</sup>, indicating that the generated by-products are non-toxic. These findings highlight the feasibility of electrochemical oxidation with BDD anodes for removing NPs from urban treated wastewater since the experimental conditions used in the previous literature often differ significantly from those in real wastewater. The study underscores its potential as a sustainable technology to mitigate the spread of these emerging pollutants into the environment.</div></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"363 ","pages":"Article 132139"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383586625007361","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates for the first time the removal of polystyrene nanoplastics (NPs) from synthetic urban treated wastewater by electrochemical oxidation with Boron-Doped Diamond (BDD). The influence of current density (10–100 mA cm−2) and initial pollutant concentration (20–100 mg L-1) was evaluated. Additionally, the effect of the anode material on NPs removal was studied, employing Mixed Metal Oxide (MMO) anodes. The process efficiency was assessed through Total Organic Carbon (TOC) reduction and acute toxicity tests using the Aliivibrio fischeri luminescent bacterium. Results demonstrate that BDD anodes achieve mineralisation rates exceeding 90 % at current densities above 50 mA cm−2, whereas MMO anodes exhibit significantly lower degradation. Due to competing reactions, such as oxygen evolution, the process efficiency decreases at higher current densities with BDD anodes. NPs removal occurs primarily by a mediated oxidation process involving electrochemically generated oxidants. After treatment, transmission electron microscopy (TEM) analysis reveals a progressive reduction in NPs size from 150 nm to 68 nm. Regarding toxicity analysis, acute toxicity can be eliminated by applying current densities above 50 mA cm−2, indicating that the generated by-products are non-toxic. These findings highlight the feasibility of electrochemical oxidation with BDD anodes for removing NPs from urban treated wastewater since the experimental conditions used in the previous literature often differ significantly from those in real wastewater. The study underscores its potential as a sustainable technology to mitigate the spread of these emerging pollutants into the environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
期刊最新文献
Editorial Board Sulfur self-doped hierarchical porous carbon materials synthesized by one-pot method for efficient adsorption of thallium(I) Enhanced water purification through the double regulation of GO/MXene membranes with sodium alginate and KOH Bromine functionalized zirconium–fumarate frameworks for enhanced xenon capture and separation Variants of the hybrid distillation/pervaporation process: Conceptual model-based optimization and environmental analysis for IPA dehydration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1