{"title":"Efficient Differentiation of hiPSCs into hMSC-like Cells under Chemically Defined Conditions on Temperature-Sensitive Micropatterned Surfaces","authors":"Pengxia Zhang, Maoying Liu, Suying Pei, Hongxin Huang, Zhengyan Zhao, Ling Yang, Wen Pan, Siyi Li, Qifeng Bai, Rui Zhang, Ping Zhou","doi":"10.1021/acsami.4c13686","DOIUrl":null,"url":null,"abstract":"The fairness of long-term self-renewal and robust cell proliferation limits the applications of human mesenchymal stem cells (hMSCs) in regenerative medicine. Inducing hMSCs from human-induced pluripotent stem cells (hiPSCs), which have the advantages of autogenous and no cell number issues, is highly valuable. However, current induction methods using FBS-containing mesenchymal culture medium have problems, including immunogenicity, microbial contamination, and low efficiency. To solve these problems, we propose a chemically defined induction protocol incorporating transforming growth factor-beta 1 and retinoic acid (RA) additives in serum-free E6 medium for the suspension induction of embryoid bodies in hiPSCs. Additionally, microgroove-patterned polydimethylsiloxane surfaces coated with temperature-sensitive <i>N</i>-isopropylacrylamide (PNIPAAm) were prepared for efficient harvesting and purification of induced hiPSC-derived hMSCs (hiPSC-MSCs). The results showed that both supplementation with RA and patterned microgrooves with a width of 20 μm could accelerate the induction of hiPSC-MSCs, realizing the promising scalable production of homogeneous cells. This study successfully established a chemically defined induction protocol and utilized patterned surfaces to obtain clinically applicable hiPSC-MSCs, which show great promise in tissue engineering, gene therapy, and cell transplantation.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"49 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c13686","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The fairness of long-term self-renewal and robust cell proliferation limits the applications of human mesenchymal stem cells (hMSCs) in regenerative medicine. Inducing hMSCs from human-induced pluripotent stem cells (hiPSCs), which have the advantages of autogenous and no cell number issues, is highly valuable. However, current induction methods using FBS-containing mesenchymal culture medium have problems, including immunogenicity, microbial contamination, and low efficiency. To solve these problems, we propose a chemically defined induction protocol incorporating transforming growth factor-beta 1 and retinoic acid (RA) additives in serum-free E6 medium for the suspension induction of embryoid bodies in hiPSCs. Additionally, microgroove-patterned polydimethylsiloxane surfaces coated with temperature-sensitive N-isopropylacrylamide (PNIPAAm) were prepared for efficient harvesting and purification of induced hiPSC-derived hMSCs (hiPSC-MSCs). The results showed that both supplementation with RA and patterned microgrooves with a width of 20 μm could accelerate the induction of hiPSC-MSCs, realizing the promising scalable production of homogeneous cells. This study successfully established a chemically defined induction protocol and utilized patterned surfaces to obtain clinically applicable hiPSC-MSCs, which show great promise in tissue engineering, gene therapy, and cell transplantation.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.