Dual-Functional Antenna Sensor for Highly Sensitive and Selective Detection of Isopropanol Gas Using Optimized Molecularly Imprinted Polymers

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL ACS Sensors Pub Date : 2025-02-20 DOI:10.1021/acssensors.4c03393
Mohammad Mahmudul Hasan, Onur Alev, Michael Cheffena
{"title":"Dual-Functional Antenna Sensor for Highly Sensitive and Selective Detection of Isopropanol Gas Using Optimized Molecularly Imprinted Polymers","authors":"Mohammad Mahmudul Hasan, Onur Alev, Michael Cheffena","doi":"10.1021/acssensors.4c03393","DOIUrl":null,"url":null,"abstract":"Accurate monitoring of isopropanol (IPA) levels is crucial for safety in industrial and laboratory settings, as high concentrations can lead to serious health issues. In this study, we present, for the first time, a dual-functional antenna sensor capable of high-performance IPA gas detection with concentration estimation and uninterrupted wireless communication, using optimized molecularly imprinted polymer (MIP)/multiwalled carbon nanotube (MWCNT)-based sensing materials. Comprehensive characterization of these materials confirms the successful formation and homogeneity of the composites. Furthermore, the electrical and gas-sensing properties of the sensing materials were evaluated using functionalized interdigitated electrode (IDE)-based sensing structures, optimized for high sensitivity, were functionalized to evaluate the electrical and gas-sensing properties of the materials. These IDE structures, which acted as impedance-varying components during operation, were coupled with a single-port monopole antenna to develop a highly sensitive and selective gas sensor while maintaining uninterrupted communication services. The results showed that the fabricated sensor platform exhibits strong selectivity, sensitivity, and stability for IPA detection at room temperature, effectively distinguishing it from other interference gases. In addition, using the same sensing material, we demonstrated that the antenna-based gas sensor exhibited higher sensitivity than the chemiresistive sensor, achieving a detection limit (18.8 ppm) below the safety thresholds for IPA. Moreover, the antenna’s radiation pattern and communication capabilities remained unaffected, ensuring uninterrupted functionality. Detailed optimization process and the sensing mechanism for a novel MIP-based selective antenna gas sensor, supported by both structural and electrical characterizations could serve as a milestone for future studies and the advancement of next-generation sensors.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"170 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03393","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate monitoring of isopropanol (IPA) levels is crucial for safety in industrial and laboratory settings, as high concentrations can lead to serious health issues. In this study, we present, for the first time, a dual-functional antenna sensor capable of high-performance IPA gas detection with concentration estimation and uninterrupted wireless communication, using optimized molecularly imprinted polymer (MIP)/multiwalled carbon nanotube (MWCNT)-based sensing materials. Comprehensive characterization of these materials confirms the successful formation and homogeneity of the composites. Furthermore, the electrical and gas-sensing properties of the sensing materials were evaluated using functionalized interdigitated electrode (IDE)-based sensing structures, optimized for high sensitivity, were functionalized to evaluate the electrical and gas-sensing properties of the materials. These IDE structures, which acted as impedance-varying components during operation, were coupled with a single-port monopole antenna to develop a highly sensitive and selective gas sensor while maintaining uninterrupted communication services. The results showed that the fabricated sensor platform exhibits strong selectivity, sensitivity, and stability for IPA detection at room temperature, effectively distinguishing it from other interference gases. In addition, using the same sensing material, we demonstrated that the antenna-based gas sensor exhibited higher sensitivity than the chemiresistive sensor, achieving a detection limit (18.8 ppm) below the safety thresholds for IPA. Moreover, the antenna’s radiation pattern and communication capabilities remained unaffected, ensuring uninterrupted functionality. Detailed optimization process and the sensing mechanism for a novel MIP-based selective antenna gas sensor, supported by both structural and electrical characterizations could serve as a milestone for future studies and the advancement of next-generation sensors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
期刊最新文献
Dual-Functional Antenna Sensor for Highly Sensitive and Selective Detection of Isopropanol Gas Using Optimized Molecularly Imprinted Polymers Neural Network-Assisted Dual-Functional Hydrogel-Based Microfluidic SERS Sensing for Divisional Recognition of Multimolecule Fingerprint Completely Flexible Self-Powered Pressure Sensor Based on Electrospinning and Electrochemical Reaction for Dynamic/Static Stimuli Detecting Surface Functionalization of Citrate-Stabilized Gold Nanoparticles with Various Disease-Specific Nonthiolated Aptamers: RSM-Based Optimization for Multifactorial Disease Biomarker Detection Novel Nucleus-Oriented Quenched Activity-Based Probes Link Cathepsin Nuclear Localization with Mitosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1