Mercury concentrations in historic autopsies from Grassy Narrows First Nation

IF 3.6 3区 医学 Q1 CLINICAL NEUROLOGY Journal of the Neurological Sciences Pub Date : 2025-02-16 DOI:10.1016/j.jns.2025.123429
J.L. Lee , M. Fraser , A. Philibert , D. Saint-Amour , D. Mergler , M. Fillion
{"title":"Mercury concentrations in historic autopsies from Grassy Narrows First Nation","authors":"J.L. Lee ,&nbsp;M. Fraser ,&nbsp;A. Philibert ,&nbsp;D. Saint-Amour ,&nbsp;D. Mergler ,&nbsp;M. Fillion","doi":"10.1016/j.jns.2025.123429","DOIUrl":null,"url":null,"abstract":"<div><div>The Asubpeeschoseewagong Anishinabek (Grassy Narrows First Nation) have been engaged in a decades-long struggle to improve their health and environment after an industrial discharge of between 9000 and 11,000 kg of mercury (Hg) into their river system. Hg concentrations in freshwater fish, central to their cultural identity, livelihood and diet, were among the highest ever reported. Between 1972 and 1992, a Canadian government program measured Hg concentrations in routine autopsies from this community. In 2017, Grassy Narrows obtained their community's autopsy reports. The present study examined the distribution of total mercury (T-Hg) and inorganic mercury (I-Hg) in brain, organ, blood, and hair samples from 21 historic autopsy reports, spanning 1976 to 1986.</div><div>T-Hg median in blood and hair were 6 ppb (range = 2.5–100) and 2.47 ppm (0.41–49.8), respectively. Hg was present in all brain regions (T-Hg median = 53 ppb, 13–299), with highest concentrations in the cerebellum (63 ppb, 16–365) and basal ganglia (58 ppb, 10–420). I-Hg constituted approximately 25 % of T-Hg in all brain regions. In organ samples, T-Hg was higher [renal medulla (290 ppb, 28–4400), renal cortex (1240 ppb, 100–6000), liver (300 ppb, 64–2400)], with greater proportion of I-Hg (82 %, 74 %, 63 %, respectively). Significant correlations were observed between T-Hg in hair and most brain regions (ρ = 0.70–0.77), blood (ρ = 0.56), and renal cortex (ρ = 0.61). While Hg accumulation in the cerebellum has been documented, the basal ganglia has seldom been an object of interest in the Hg scientific literature. The presence of Hg in the brain and other organs complement current studies on the long-term health consequences of Hg in this community. The findings further suggest the need for a closer examination of the role of basal ganglia in Hg-related disorders.</div></div>","PeriodicalId":17417,"journal":{"name":"Journal of the Neurological Sciences","volume":"471 ","pages":"Article 123429"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Neurological Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022510X25000462","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Asubpeeschoseewagong Anishinabek (Grassy Narrows First Nation) have been engaged in a decades-long struggle to improve their health and environment after an industrial discharge of between 9000 and 11,000 kg of mercury (Hg) into their river system. Hg concentrations in freshwater fish, central to their cultural identity, livelihood and diet, were among the highest ever reported. Between 1972 and 1992, a Canadian government program measured Hg concentrations in routine autopsies from this community. In 2017, Grassy Narrows obtained their community's autopsy reports. The present study examined the distribution of total mercury (T-Hg) and inorganic mercury (I-Hg) in brain, organ, blood, and hair samples from 21 historic autopsy reports, spanning 1976 to 1986.
T-Hg median in blood and hair were 6 ppb (range = 2.5–100) and 2.47 ppm (0.41–49.8), respectively. Hg was present in all brain regions (T-Hg median = 53 ppb, 13–299), with highest concentrations in the cerebellum (63 ppb, 16–365) and basal ganglia (58 ppb, 10–420). I-Hg constituted approximately 25 % of T-Hg in all brain regions. In organ samples, T-Hg was higher [renal medulla (290 ppb, 28–4400), renal cortex (1240 ppb, 100–6000), liver (300 ppb, 64–2400)], with greater proportion of I-Hg (82 %, 74 %, 63 %, respectively). Significant correlations were observed between T-Hg in hair and most brain regions (ρ = 0.70–0.77), blood (ρ = 0.56), and renal cortex (ρ = 0.61). While Hg accumulation in the cerebellum has been documented, the basal ganglia has seldom been an object of interest in the Hg scientific literature. The presence of Hg in the brain and other organs complement current studies on the long-term health consequences of Hg in this community. The findings further suggest the need for a closer examination of the role of basal ganglia in Hg-related disorders.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Neurological Sciences
Journal of the Neurological Sciences 医学-临床神经学
CiteScore
7.60
自引率
2.30%
发文量
313
审稿时长
22 days
期刊介绍: The Journal of the Neurological Sciences provides a medium for the prompt publication of original articles in neurology and neuroscience from around the world. JNS places special emphasis on articles that: 1) provide guidance to clinicians around the world (Best Practices, Global Neurology); 2) report cutting-edge science related to neurology (Basic and Translational Sciences); 3) educate readers about relevant and practical clinical outcomes in neurology (Outcomes Research); and 4) summarize or editorialize the current state of the literature (Reviews, Commentaries, and Editorials). JNS accepts most types of manuscripts for consideration including original research papers, short communications, reviews, book reviews, letters to the Editor, opinions and editorials. Topics considered will be from neurology-related fields that are of interest to practicing physicians around the world. Examples include neuromuscular diseases, demyelination, atrophies, dementia, neoplasms, infections, epilepsies, disturbances of consciousness, stroke and cerebral circulation, growth and development, plasticity and intermediary metabolism.
期刊最新文献
Editorial Board Adverse events analysis of Diroximel fumarate based on FAERS database Mercury concentrations in historic autopsies from Grassy Narrows First Nation Radiological mimics of cerebral microbleeds following endovascular aneurysm treatment: Implications for cerebral amyloid angiopathy diagnosis Effects of rhythmic-cued gait training on gait-like task related brain activation in people with multiple sclerosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1