Oxalate stimulates macrophage secretion of prostaglandin E2 to promote renal tubular epithelial cell osteogenesis

IF 5.2 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Life sciences Pub Date : 2025-02-20 DOI:10.1016/j.lfs.2025.123476
Qianlin Song , Xin Chen , Qinhong Jiang , Ziqi He , Xiaozhe Su , Caitao Dong , Heng Xiang , Chao Song , Yunhe Xiong , Sixing Yang
{"title":"Oxalate stimulates macrophage secretion of prostaglandin E2 to promote renal tubular epithelial cell osteogenesis","authors":"Qianlin Song ,&nbsp;Xin Chen ,&nbsp;Qinhong Jiang ,&nbsp;Ziqi He ,&nbsp;Xiaozhe Su ,&nbsp;Caitao Dong ,&nbsp;Heng Xiang ,&nbsp;Chao Song ,&nbsp;Yunhe Xiong ,&nbsp;Sixing Yang","doi":"10.1016/j.lfs.2025.123476","DOIUrl":null,"url":null,"abstract":"<div><div>Osteogenesis of renal tubular epithelial cells (RTEC) is an important trigger for calcium oxalate (CaOx) kidney stone formation, but whether macrophages are involved in RTEC osteogenesis is unclear. The purpose of this study was to investigate the role and mechanism of macrophages in CaOx kidney stones on RTEC osteogenesis. Oxalate or ethylene glycol was used to construct in vitro and in vivo CaOx kidney stone models, respectively. Macrophage-derived conditioned medium was used to induce osteogenesis in HK-2 cells, and genetic controls and pharmacological interventions were used to investigate the underlying mechanism. The results demonstrated that macrophage-conditioned medium under oxalate intervention facilitated the increase of alkaline phosphatase and calcium salts as well as the upregulation of osteogenic marker genes (BMP2 and RUNX2) expression in HK-2 cells. On the one hand, the knockdown of the <em>JAK2</em> gene in HK-2 cells reverses the role of macrophage-derived conditioned medium in promoting osteogenesis in HK-2 cells. On the other hand, inhibition of prostaglandin E2 (PGE2) generation in macrophages reverses osteogenesis in HK-2 cells. Moreover, inhibition of PGE2 generation would cure ethylene glycol-induced renal injury and calcium salt deposition, as well as osteogenesis of RTEC. This study illustrates that in the presence of oxalate, macrophages secret PGE2 to activate JAK2/STAT3 signaling in RTEC, which could trigger osteogenesis. It provides new insights into the mechanism of CaOx kidney stone formation.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"366 ","pages":"Article 123476"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320525001092","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Osteogenesis of renal tubular epithelial cells (RTEC) is an important trigger for calcium oxalate (CaOx) kidney stone formation, but whether macrophages are involved in RTEC osteogenesis is unclear. The purpose of this study was to investigate the role and mechanism of macrophages in CaOx kidney stones on RTEC osteogenesis. Oxalate or ethylene glycol was used to construct in vitro and in vivo CaOx kidney stone models, respectively. Macrophage-derived conditioned medium was used to induce osteogenesis in HK-2 cells, and genetic controls and pharmacological interventions were used to investigate the underlying mechanism. The results demonstrated that macrophage-conditioned medium under oxalate intervention facilitated the increase of alkaline phosphatase and calcium salts as well as the upregulation of osteogenic marker genes (BMP2 and RUNX2) expression in HK-2 cells. On the one hand, the knockdown of the JAK2 gene in HK-2 cells reverses the role of macrophage-derived conditioned medium in promoting osteogenesis in HK-2 cells. On the other hand, inhibition of prostaglandin E2 (PGE2) generation in macrophages reverses osteogenesis in HK-2 cells. Moreover, inhibition of PGE2 generation would cure ethylene glycol-induced renal injury and calcium salt deposition, as well as osteogenesis of RTEC. This study illustrates that in the presence of oxalate, macrophages secret PGE2 to activate JAK2/STAT3 signaling in RTEC, which could trigger osteogenesis. It provides new insights into the mechanism of CaOx kidney stone formation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Life sciences
Life sciences 医学-药学
CiteScore
12.20
自引率
1.60%
发文量
841
审稿时长
6 months
期刊介绍: Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed. The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.
期刊最新文献
Editorial Board Oxalate stimulates macrophage secretion of prostaglandin E2 to promote renal tubular epithelial cell osteogenesis Heightened sensitivity to adverse effects of metformin in mtDNA mutant patient cells Benzbromarone improves blood hypercoagulability after TBI by reducing phosphatidylserine externalization through inhibition of TMEM16F expression Linking KATP channel activation to p-AKT/mTORC1/eEF2/BDNF axis unravels Nicorandil's promise in countering acetaminophen-induced hepatic encephalopathy in mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1