Development of an analytical model to evaluate the effect of the ported shroud on centrifugal compressors

Carlo Cravero , Philippe Joe Leutcha , Davide Marsano
{"title":"Development of an analytical model to evaluate the effect of the ported shroud on centrifugal compressors","authors":"Carlo Cravero ,&nbsp;Philippe Joe Leutcha ,&nbsp;Davide Marsano","doi":"10.1016/j.geits.2024.100249","DOIUrl":null,"url":null,"abstract":"<div><div>Extending the operational range of centrifugal compressors is strategically vital for turbocharging internal combustion engines, particularly in enhancing efficiency and expanding operational capabilities. This extension is crucial for reducing environmental impact by enabling engines to perform more efficiently under a wider range of conditions. In the transition from conventional thermal reciprocating engines, fuel cells, especially proton exchange membrane fuel cells (PEMFCs), are emerging as strong alternatives. In automotive applications, PEMFCs often require turbocharging to supply compressed air to the cathode system of the fuel cell stack. This integration is essential for utilizing the heat from the fuel cell's waste products, thereby improving overall system efficiency. Ongoing research and development in radial turbomachinery are critical for optimizing the performance of these propulsion systems. Specifically, adapting turbocharger designs to meet the unique requirements of fuel cell systems and extending their operational range are essential tasks. Using a simplified CFD model, the impact of a ported shroud on compressor performance and range extension has been investigated. Flow structure analysis identified that the primary role of the ported shroud is to modify the relative flow angle on the rotor at the highest span channel. Additionally, a simplified analytical model was developed to quantify the effectiveness of different ported shroud geometries on the compressor by examining changes in tangential velocity after mixing with the flow from the cavity.</div></div>","PeriodicalId":100596,"journal":{"name":"Green Energy and Intelligent Transportation","volume":"4 2","pages":"Article 100249"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Intelligent Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773153724001014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Extending the operational range of centrifugal compressors is strategically vital for turbocharging internal combustion engines, particularly in enhancing efficiency and expanding operational capabilities. This extension is crucial for reducing environmental impact by enabling engines to perform more efficiently under a wider range of conditions. In the transition from conventional thermal reciprocating engines, fuel cells, especially proton exchange membrane fuel cells (PEMFCs), are emerging as strong alternatives. In automotive applications, PEMFCs often require turbocharging to supply compressed air to the cathode system of the fuel cell stack. This integration is essential for utilizing the heat from the fuel cell's waste products, thereby improving overall system efficiency. Ongoing research and development in radial turbomachinery are critical for optimizing the performance of these propulsion systems. Specifically, adapting turbocharger designs to meet the unique requirements of fuel cell systems and extending their operational range are essential tasks. Using a simplified CFD model, the impact of a ported shroud on compressor performance and range extension has been investigated. Flow structure analysis identified that the primary role of the ported shroud is to modify the relative flow angle on the rotor at the highest span channel. Additionally, a simplified analytical model was developed to quantify the effectiveness of different ported shroud geometries on the compressor by examining changes in tangential velocity after mixing with the flow from the cavity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
0
期刊最新文献
Intelligent lithium plating detection and prediction method for Li-ion batteries based on random forest model Mixed ion-electron conducting LixAg alloy anode enabling stable Li plating/stripping in solid-state batteries via enhanced Li diffusion kinetic Radial distribution systems performance enhancement through RE (Renewable Energy) integration and comprehensive contingency ranking analysis State of charge estimation of lithium-ion battery based on state of temperature estimation using weight clustered-convolutional neural network-long short-term memory Unraveling mechanisms of electrolyte wetting process in three-dimensional electrode structures: Insights from realistic architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1