Upwelling effects across different levels of biological organization: Integrating biochemical constituents, physiological performance and muscle transcriptomic response in the intertidal FISH Girella laevifrons (kyphosidae)
Manuel Roberto García-Huidobro , Rodrigo Zuloaga , Katalina Llanos-Azócar , Phillip Dettleff , Marcela Aldana , Ángel Urzúa , Cristian Duarte , Alfredo Molina , Oscar Varas , Victor M. Pulgar , Juan Antonio Valdés , José Pulgar
{"title":"Upwelling effects across different levels of biological organization: Integrating biochemical constituents, physiological performance and muscle transcriptomic response in the intertidal FISH Girella laevifrons (kyphosidae)","authors":"Manuel Roberto García-Huidobro , Rodrigo Zuloaga , Katalina Llanos-Azócar , Phillip Dettleff , Marcela Aldana , Ángel Urzúa , Cristian Duarte , Alfredo Molina , Oscar Varas , Victor M. Pulgar , Juan Antonio Valdés , José Pulgar","doi":"10.1016/j.marenvres.2025.107023","DOIUrl":null,"url":null,"abstract":"<div><div>The physical-chemical variability of coastal upwelling creates a mosaic of environmental conditions that affect different levels of biological organization. Understanding the mechanisms that organisms use to cope with this variability is critical for addressing the challenges that climate change imposes on coastal ecosystems. This study integrates information on transcriptomic traits, metabolic performance, and the quantity of organic biomolecules in the intertidal fish <em>Girella laevifrons</em> from four locations with varying upwelling intensities. The results show that fish from locations with stronger upwelling intensity have higher levels of glucose, lipids, and proteins in their muscle tissue, in addition to better physiological performance compared to fish from sites with weaker upwelling intensity. Transcriptomic analyses revealed that genes associated with multicellular development and oxygen metabolism are more highly expressed in sites with stronger upwelling intensity, whereas genes related to protein ubiquitination are more expressed in sites with weaker upwelling intensity. In response to the mosaic of upwelling intensities (SAM-SST), and in-situ temperature, nutrients and oxygen variation observed in field, fish showed differential responses, suggesting local adaptations process that maximize ecological success in these areas with different physical-chemical conditions. Future studies should consider the integration of molecular tools to better understand the responses of organisms to environmental variability as upwelling intensities. This will help elucidate the complex interactions between environmental factors and biological responses, providing insights into how marine organisms might adapt to changing conditions. Understanding these mechanisms is essential for predicting the impacts of climate change on coastal ecosystems and for developing effective conservation and management strategies. The integration of transcriptomic data with metabolic and physiological performance measures offers a comprehensive approach to studying the adaptive responses of marine organisms to their dynamic environments considering the future responses in face to predict global change.</div></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"205 ","pages":"Article 107023"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141113625000807","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The physical-chemical variability of coastal upwelling creates a mosaic of environmental conditions that affect different levels of biological organization. Understanding the mechanisms that organisms use to cope with this variability is critical for addressing the challenges that climate change imposes on coastal ecosystems. This study integrates information on transcriptomic traits, metabolic performance, and the quantity of organic biomolecules in the intertidal fish Girella laevifrons from four locations with varying upwelling intensities. The results show that fish from locations with stronger upwelling intensity have higher levels of glucose, lipids, and proteins in their muscle tissue, in addition to better physiological performance compared to fish from sites with weaker upwelling intensity. Transcriptomic analyses revealed that genes associated with multicellular development and oxygen metabolism are more highly expressed in sites with stronger upwelling intensity, whereas genes related to protein ubiquitination are more expressed in sites with weaker upwelling intensity. In response to the mosaic of upwelling intensities (SAM-SST), and in-situ temperature, nutrients and oxygen variation observed in field, fish showed differential responses, suggesting local adaptations process that maximize ecological success in these areas with different physical-chemical conditions. Future studies should consider the integration of molecular tools to better understand the responses of organisms to environmental variability as upwelling intensities. This will help elucidate the complex interactions between environmental factors and biological responses, providing insights into how marine organisms might adapt to changing conditions. Understanding these mechanisms is essential for predicting the impacts of climate change on coastal ecosystems and for developing effective conservation and management strategies. The integration of transcriptomic data with metabolic and physiological performance measures offers a comprehensive approach to studying the adaptive responses of marine organisms to their dynamic environments considering the future responses in face to predict global change.
期刊介绍:
Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes.
Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following:
– The extent, persistence, and consequences of change and the recovery from such change in natural marine systems
– The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems
– The biogeochemistry of naturally occurring and anthropogenic substances
– Models that describe and predict the above processes
– Monitoring studies, to the extent that their results provide new information on functional processes
– Methodological papers describing improved quantitative techniques for the marine sciences.