Zhongliang Yu , Lin Yu , Wenqing Zhu , Junjie Liu , Xiaoding Wei
{"title":"An analytical model for customizing reinforcement plasticity to address the strength-ductility trade-off in staggered composites","authors":"Zhongliang Yu , Lin Yu , Wenqing Zhu , Junjie Liu , Xiaoding Wei","doi":"10.1016/j.jmbbm.2025.106959","DOIUrl":null,"url":null,"abstract":"<div><div>Plastic metals and low-dimensional materials are extensively utilized as reinforcements in fabricating bio-inspired staggered composites. Here, we introduce a comprehensive analytical model to investigate the influence of reinforcement plasticity on the mechanical properties of staggered composites while preserving the non-linear plastic characteristics of the matrix. Competitive plastic deformation in both the reinforcement and the matrix leads to two distinct deformation modes: reinforcement-first yield or matrix-first yield. Each mode exhibits different stages of deformation and failure in plastic staggered composites. Our analytical formulae, validated via finite element analysis, establish connections between effective stress and strain responses, material compositions, and structural geometry, thereby revealing non-linear shear stress transfer and plastic evolution mechanisms. Furthermore, we discover that tailoring the plasticity of the reinforcement while maintaining the dominant plastic deformation of the matrix, can overcome the trade-off between composite strength and ductility. Our model provides valuable insights into designing high-performance metal-reinforced staggered composites and can be further extended to explore the mechanical properties of plastic low-dimensional material-reinforced nanocomposites with noncovalent interfaces.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"166 ","pages":"Article 106959"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175161612500075X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Plastic metals and low-dimensional materials are extensively utilized as reinforcements in fabricating bio-inspired staggered composites. Here, we introduce a comprehensive analytical model to investigate the influence of reinforcement plasticity on the mechanical properties of staggered composites while preserving the non-linear plastic characteristics of the matrix. Competitive plastic deformation in both the reinforcement and the matrix leads to two distinct deformation modes: reinforcement-first yield or matrix-first yield. Each mode exhibits different stages of deformation and failure in plastic staggered composites. Our analytical formulae, validated via finite element analysis, establish connections between effective stress and strain responses, material compositions, and structural geometry, thereby revealing non-linear shear stress transfer and plastic evolution mechanisms. Furthermore, we discover that tailoring the plasticity of the reinforcement while maintaining the dominant plastic deformation of the matrix, can overcome the trade-off between composite strength and ductility. Our model provides valuable insights into designing high-performance metal-reinforced staggered composites and can be further extended to explore the mechanical properties of plastic low-dimensional material-reinforced nanocomposites with noncovalent interfaces.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.