Effect of cyclic heating-rapid cooling on fracture behavior of notched semi-circular bend granite

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL Theoretical and Applied Fracture Mechanics Pub Date : 2025-02-17 DOI:10.1016/j.tafmec.2025.104889
Yunlong Wang , Peng Hou , Shanjie Su , Xin Liang , Yanan Gao , Feng Gao
{"title":"Effect of cyclic heating-rapid cooling on fracture behavior of notched semi-circular bend granite","authors":"Yunlong Wang ,&nbsp;Peng Hou ,&nbsp;Shanjie Su ,&nbsp;Xin Liang ,&nbsp;Yanan Gao ,&nbsp;Feng Gao","doi":"10.1016/j.tafmec.2025.104889","DOIUrl":null,"url":null,"abstract":"<div><div>Cyclic liquid nitrogen (LN<sub>2</sub>) fracturing is a promising innovative technology expected to rapidly form fracture networks in geothermal reservoirs. The fracture characteristics are crucial for estimating the effect of the artificial fracturing. Therefore, a cyclic heating-rapid cooling (CHRC) experiment is conducted on the notched semi-circular bend (NSCB) granite, where LN<sub>2</sub> and water cooling are employed. The structural damage and fracture characteristics of the CHRC treated sample are analyzed using ultrasonic detection, three-point bending test, and acoustic emission (AE) technique. A grain-based model with thermo‑mechanical coupling is constructed to explore the micro-cracking mechanism of the CHRC treatment. The results indicate that the damage caused by the CHRC increases significantly in the first five cycles, especially under LN<sub>2</sub> cooling. The decline of fracture toughness with cycles under different cooling methods. LN<sub>2</sub> cooling can dramatically enhance the AE energy release and fracture surface roughness in the initial cycles. LN<sub>2</sub> cooling can promote the generation of tensile cracks and intra-granular microcracks. The fracture behaviors of the CHRC treated granite are mainly determined by the stable thermal stress, significantly affected by mineral distribution. These results can provide a comprehensive understanding of cyclic LN<sub>2</sub> fracturing compared to hydraulic fracturing, supporting theoretical guidance for geothermal extraction.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"137 ","pages":"Article 104889"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844225000473","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclic liquid nitrogen (LN2) fracturing is a promising innovative technology expected to rapidly form fracture networks in geothermal reservoirs. The fracture characteristics are crucial for estimating the effect of the artificial fracturing. Therefore, a cyclic heating-rapid cooling (CHRC) experiment is conducted on the notched semi-circular bend (NSCB) granite, where LN2 and water cooling are employed. The structural damage and fracture characteristics of the CHRC treated sample are analyzed using ultrasonic detection, three-point bending test, and acoustic emission (AE) technique. A grain-based model with thermo‑mechanical coupling is constructed to explore the micro-cracking mechanism of the CHRC treatment. The results indicate that the damage caused by the CHRC increases significantly in the first five cycles, especially under LN2 cooling. The decline of fracture toughness with cycles under different cooling methods. LN2 cooling can dramatically enhance the AE energy release and fracture surface roughness in the initial cycles. LN2 cooling can promote the generation of tensile cracks and intra-granular microcracks. The fracture behaviors of the CHRC treated granite are mainly determined by the stable thermal stress, significantly affected by mineral distribution. These results can provide a comprehensive understanding of cyclic LN2 fracturing compared to hydraulic fracturing, supporting theoretical guidance for geothermal extraction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Theoretical and Applied Fracture Mechanics
Theoretical and Applied Fracture Mechanics 工程技术-工程:机械
CiteScore
8.40
自引率
18.90%
发文量
435
审稿时长
37 days
期刊介绍: Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind. The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.
期刊最新文献
Experimental study on the influence of structure plane on rockburst of hard rock tunnel under combined dynamic-static loading conditions Editorial Board Macro-mesoscopic study of the deformation and failure mechanism of through-boundary type locked rock masses Effect of cyclic heating-rapid cooling on fracture behavior of notched semi-circular bend granite Critical strain energy release rate in additively manufactured polymers through comparative study of ABS and PLA across various raster angles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1