Xiang Yu , Yanli Feng , Wenhan Ma , Xue Xiao , Jun Liu , Weiwei Dong , Yuanliang Hu , Huan Liu
{"title":"Ultrasound combined with Adenosine 5′-Monophosphate Treatment: A Strategic Approach for enhancing the tenderness of chicken wooden breast meat","authors":"Xiang Yu , Yanli Feng , Wenhan Ma , Xue Xiao , Jun Liu , Weiwei Dong , Yuanliang Hu , Huan Liu","doi":"10.1016/j.ultsonch.2025.107284","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to evaluate the effects of ultrasound and adenosine 5′-monophosphate (AMP) treatments on the quality characteristics and tenderness of chicken wooden breast (CWB). Compared to normal breast, CWB exhibits distinct quality characteristics, including increased weight, higher pH, pale color, and a firmer texture. It was found that ultrasound, AMP, and their combined application significantly reduced the shear force of CWB (<em>p</em> < 0.05), effectively improving its tenderness. The combined treatment of ultrasound and AMP significantly decreased the filtering residues of myofibrillar proteins (MPs) and increased myofibrillar fragmentation index (<em>p</em> < 0.05). MPs structure analysis showed that the combined ultrasound and AMP treatment facilitated the degradation of tropomyosin, the transformation of α-helix into β-sheet, and decreased intensity of tryptophan fluorescence, promoting MPs degradation and improving CWB tenderness. Pathological analysis and scanning electron microscopy also observed muscle fiber damage and the loss of myofibrillar membrane integrity following the combined treatment. These findings highlight the potential of AMP and ultrasound treatments in the tenderization process of CWB.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"114 ","pages":"Article 107284"},"PeriodicalIF":8.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135041772500063X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to evaluate the effects of ultrasound and adenosine 5′-monophosphate (AMP) treatments on the quality characteristics and tenderness of chicken wooden breast (CWB). Compared to normal breast, CWB exhibits distinct quality characteristics, including increased weight, higher pH, pale color, and a firmer texture. It was found that ultrasound, AMP, and their combined application significantly reduced the shear force of CWB (p < 0.05), effectively improving its tenderness. The combined treatment of ultrasound and AMP significantly decreased the filtering residues of myofibrillar proteins (MPs) and increased myofibrillar fragmentation index (p < 0.05). MPs structure analysis showed that the combined ultrasound and AMP treatment facilitated the degradation of tropomyosin, the transformation of α-helix into β-sheet, and decreased intensity of tryptophan fluorescence, promoting MPs degradation and improving CWB tenderness. Pathological analysis and scanning electron microscopy also observed muscle fiber damage and the loss of myofibrillar membrane integrity following the combined treatment. These findings highlight the potential of AMP and ultrasound treatments in the tenderization process of CWB.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.