Core-shell transition metal disulfide grafted carbon matrix composite as an anode material for high-performance lithium-ion batteries

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2025-02-21 DOI:10.1016/j.est.2025.115878
Manasa Pantrangi , Eric Ashalley , Wail Hafiz , Mohammed Kamal Hadi , Hu Xiao , Umer Younis , Nisha Singh , Yue Zhang , Gopi Krishna , Fen Ran , Liang Pan , Zhiming Wang
{"title":"Core-shell transition metal disulfide grafted carbon matrix composite as an anode material for high-performance lithium-ion batteries","authors":"Manasa Pantrangi ,&nbsp;Eric Ashalley ,&nbsp;Wail Hafiz ,&nbsp;Mohammed Kamal Hadi ,&nbsp;Hu Xiao ,&nbsp;Umer Younis ,&nbsp;Nisha Singh ,&nbsp;Yue Zhang ,&nbsp;Gopi Krishna ,&nbsp;Fen Ran ,&nbsp;Liang Pan ,&nbsp;Zhiming Wang","doi":"10.1016/j.est.2025.115878","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-ion batteries are essential for powering a wide range of applications, from portable electronics to electric vehicles. As demand grows for high-capacity and long-lasting batteries, the development of advanced anode materials has become critical. Transition metal disulfides (TMDs) have emerged as promising candidates due to their layered structures and high theoretical capacities. This study introduces a cobalt disulfide (CoS₂) and carbon composite with a core-shell structure as a TMD-based anode material engineered to enhance lithium-ion battery performance. The composite's architecture, consisting of CoS₂ nanoparticles embedded within carbon hollow spheres, promotes high electrical conductivity, efficient ion transport, and stability against volume changes during cycling. Detailed structural and compositional analysis confirms the robust integrity of the composite. Electrochemical tests demonstrate an initial discharge capacity of approximately 1000 mAh g<sup>−1</sup>, stabilizing at 850 mAh g<sup>−1</sup> in subsequent cycles with minimal voltage polarization. The composite retains a capacity of 300 mAh g<sup>−1</sup> after 400 cycles and achieves nearly 100 % Coulombic efficiency, reflecting excellent reversibility. It also exhibits superior rate capability, maintaining 300 mAh g<sup>−1</sup> at a high current density of 3 A g<sup>−1</sup>, with full capacity recovery upon returning to lower rates. The carbon hollow spheres enhance conductivity and buffer against expansion, while the CoS₂ nanoparticles improve electron transport and electrochemical kinetics. This study underscores the potential of TMD-based core-shell composites, as high-performance anode materials, advancing the development of next-generation lithium-ion batteries with enhanced efficiency, durability, and reliability.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"114 ","pages":"Article 115878"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25005912","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries are essential for powering a wide range of applications, from portable electronics to electric vehicles. As demand grows for high-capacity and long-lasting batteries, the development of advanced anode materials has become critical. Transition metal disulfides (TMDs) have emerged as promising candidates due to their layered structures and high theoretical capacities. This study introduces a cobalt disulfide (CoS₂) and carbon composite with a core-shell structure as a TMD-based anode material engineered to enhance lithium-ion battery performance. The composite's architecture, consisting of CoS₂ nanoparticles embedded within carbon hollow spheres, promotes high electrical conductivity, efficient ion transport, and stability against volume changes during cycling. Detailed structural and compositional analysis confirms the robust integrity of the composite. Electrochemical tests demonstrate an initial discharge capacity of approximately 1000 mAh g−1, stabilizing at 850 mAh g−1 in subsequent cycles with minimal voltage polarization. The composite retains a capacity of 300 mAh g−1 after 400 cycles and achieves nearly 100 % Coulombic efficiency, reflecting excellent reversibility. It also exhibits superior rate capability, maintaining 300 mAh g−1 at a high current density of 3 A g−1, with full capacity recovery upon returning to lower rates. The carbon hollow spheres enhance conductivity and buffer against expansion, while the CoS₂ nanoparticles improve electron transport and electrochemical kinetics. This study underscores the potential of TMD-based core-shell composites, as high-performance anode materials, advancing the development of next-generation lithium-ion batteries with enhanced efficiency, durability, and reliability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Multi-functional electrolyte additive facilitating reversible and uniform zinc deposition for sustainable alkaline zinc-iron flow batteries Exploring unique properties of polypyrrole reinforced molybdenum disulfide electrodes for aqueous aluminum ion capacitors Zincophilic and hydrophobic group grafting vanadyl phosphate cathode for high performance zinc ion batteries Insights into the selection of SiO bond containing electrolyte additives for Si-based lithium-ion batteries Technical viability of 136 MWh PV-biogas-battery energy storage power plant: Policy guidelines for BESS based-VRE integration deployment in Thailand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1