Hang Gao, Xinyu Wang, Min Wu, Zhanpeng Sun, Mingjun Nan, Xiangkun Ma
{"title":"Multi-functional electrolyte additive facilitating reversible and uniform zinc deposition for sustainable alkaline zinc-iron flow batteries","authors":"Hang Gao, Xinyu Wang, Min Wu, Zhanpeng Sun, Mingjun Nan, Xiangkun Ma","doi":"10.1016/j.est.2025.115942","DOIUrl":null,"url":null,"abstract":"<div><div>Alkaline zinc‑iron flow batteries (AZIFBs) have undergone rapid development since their merits of high open-circuit voltage, exceptional battery efficiency, and robust system stability. However, AZIFBs always suffer from the issues of the side reaction and zinc dendrites lead to irreversible and uneven zinc deposition, ultimately shortening the battery lifespan. To address these challenges, a multi-functional additive of sulfoxide (SL) is added as a typical [Zn(OH)<sub>4</sub>]<sup>2−</sup> electrolyte. The comprehensive research reveals that the incorporation of SL as an additive effectively modifies the solvation structure of electrolytes. Consequently, the functional additive enhances the stability of the electrolyte, suppressing the hydrogen evolution reaction, corrosion, and side reaction, thereby enhancing the reversible deposition of zinc. Furthermore, the functional additive slows down the diffusion coefficient during the deposition process, inducing even nucleation. Therefore, the multi-functional electrolyte additive enables reversible and uniform zinc deposition. As a proof of concept, the AZIFBs with multi-functional additive demonstrated remarkable stability with over 320 cycles. Furthermore, the average coulomb efficiency reached about 99.53 %, while the energy efficiency hovered around 75.54 % at a current density of 80 mA cm<sup>−2</sup>, which is much higher than that of a typical electrolyte. Even at a large current density of 160 mA cm<sup>−2</sup>, the coulomb efficiency was still maintained exceeding 99 %. This work offers a strategy for designing the multi-functional electrolyte additive for sustainable zinc-based flow batteries.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"114 ","pages":"Article 115942"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25006553","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Alkaline zinc‑iron flow batteries (AZIFBs) have undergone rapid development since their merits of high open-circuit voltage, exceptional battery efficiency, and robust system stability. However, AZIFBs always suffer from the issues of the side reaction and zinc dendrites lead to irreversible and uneven zinc deposition, ultimately shortening the battery lifespan. To address these challenges, a multi-functional additive of sulfoxide (SL) is added as a typical [Zn(OH)4]2− electrolyte. The comprehensive research reveals that the incorporation of SL as an additive effectively modifies the solvation structure of electrolytes. Consequently, the functional additive enhances the stability of the electrolyte, suppressing the hydrogen evolution reaction, corrosion, and side reaction, thereby enhancing the reversible deposition of zinc. Furthermore, the functional additive slows down the diffusion coefficient during the deposition process, inducing even nucleation. Therefore, the multi-functional electrolyte additive enables reversible and uniform zinc deposition. As a proof of concept, the AZIFBs with multi-functional additive demonstrated remarkable stability with over 320 cycles. Furthermore, the average coulomb efficiency reached about 99.53 %, while the energy efficiency hovered around 75.54 % at a current density of 80 mA cm−2, which is much higher than that of a typical electrolyte. Even at a large current density of 160 mA cm−2, the coulomb efficiency was still maintained exceeding 99 %. This work offers a strategy for designing the multi-functional electrolyte additive for sustainable zinc-based flow batteries.
期刊介绍:
Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.