Macromolecule crosslinked hydroxide exchange membranes with low ammonia crossover for direct ammonia fuel cells

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Pub Date : 2025-02-18 DOI:10.1016/j.memsci.2025.123862
Zhilin Jiao , Yun Zhao , Yangkai Han , Zhiwei Ren , Jingshuai Yang , Zhigang Shao
{"title":"Macromolecule crosslinked hydroxide exchange membranes with low ammonia crossover for direct ammonia fuel cells","authors":"Zhilin Jiao ,&nbsp;Yun Zhao ,&nbsp;Yangkai Han ,&nbsp;Zhiwei Ren ,&nbsp;Jingshuai Yang ,&nbsp;Zhigang Shao","doi":"10.1016/j.memsci.2025.123862","DOIUrl":null,"url":null,"abstract":"<div><div>Ammonia crossover in hydroxide exchange membrane (HEM) poses a significant challenge to the advancement of low-temperature DAFCs. In this study, we have developed two types of macromolecule crosslinked HEMs (PNH-ene-x and PNH-yne-x) through a straightforward in-situ thermal crosslinking method using alkenes and aromatic crosslinked moieties. The engineered crosslinked networks demonstrate dual functionality: effectively limiting water absorption to suppress ammonia permeation (2.62 × 10<sup>−7</sup> cm<sup>2</sup> s<sup>−1</sup> for PNH-ene-2%) while maintaining a well-defined microphase-separated morphology to promote hydroxide ion conduction (45.1 mS cm<sup>−1</sup> at 30 °C). PNH-ene-2% achieves a superior membrane selectivity (9.57 × 10<sup>7</sup> mS s cm<sup>−3</sup>) through optimal balance between transport properties and structural stability. Accordingly, the DAFC with PNH-ene-2% exhibits a high cell energy efficiency (26.9%) and a modest peak power density (256.8 mW cm<sup>−2</sup>), representing the best record for low-temperature DAFCs to date. This work suggests that crosslinking is an effective approach to prepare high-performance HEMs for low-temperature DAFCs.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"722 ","pages":"Article 123862"},"PeriodicalIF":8.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738825001759","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ammonia crossover in hydroxide exchange membrane (HEM) poses a significant challenge to the advancement of low-temperature DAFCs. In this study, we have developed two types of macromolecule crosslinked HEMs (PNH-ene-x and PNH-yne-x) through a straightforward in-situ thermal crosslinking method using alkenes and aromatic crosslinked moieties. The engineered crosslinked networks demonstrate dual functionality: effectively limiting water absorption to suppress ammonia permeation (2.62 × 10−7 cm2 s−1 for PNH-ene-2%) while maintaining a well-defined microphase-separated morphology to promote hydroxide ion conduction (45.1 mS cm−1 at 30 °C). PNH-ene-2% achieves a superior membrane selectivity (9.57 × 107 mS s cm−3) through optimal balance between transport properties and structural stability. Accordingly, the DAFC with PNH-ene-2% exhibits a high cell energy efficiency (26.9%) and a modest peak power density (256.8 mW cm−2), representing the best record for low-temperature DAFCs to date. This work suggests that crosslinking is an effective approach to prepare high-performance HEMs for low-temperature DAFCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
期刊最新文献
Sustainable and exceptional Li+ /Mg2+selectivity through electrocoagulation enhanced triamino guanidine modified membrane Engineering charge spatial distribution and transport highways in mix-charged polyamide nanofilms for ultra-permselective Li+/Mg2+ separation Editorial Board Exploring Nafion's microstructural changes and the impact on the performance of PEMFC under high-energy radiation Macromolecule crosslinked hydroxide exchange membranes with low ammonia crossover for direct ammonia fuel cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1