{"title":"Stopping power of surface magnetoplasmons with viscous and quantum effects in different two-dimensional targets","authors":"Ya Zhang , Wei Jiang","doi":"10.1016/j.rinp.2025.108156","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates viscous and quantum effects on the collective behavior of surface plasmons on various metals, such as the conventional surface magnetoplasmons and the acoustic surface magnetoplasmons, under the modulations of magnetic field and particle–surface interactions. We calculate wake potential, plasmon density, and stopping power based on a viscous quantum hydrodynamic model. It is observed that viscous effects tend to lower and broaden the peaks of stopping power, wake potential and plasmon density oscillations. Quantum effects modify the position and shape of these peaks, which might be essential for optimizing conditions in processes like materials engineering. The coupling of viscous and quantum effects significantly impacts the excitation of surface magnetoplasmons, with notable variations across different metals, indicating that material properties influence the plasmonic behavior.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"70 ","pages":"Article 108156"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379725000506","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates viscous and quantum effects on the collective behavior of surface plasmons on various metals, such as the conventional surface magnetoplasmons and the acoustic surface magnetoplasmons, under the modulations of magnetic field and particle–surface interactions. We calculate wake potential, plasmon density, and stopping power based on a viscous quantum hydrodynamic model. It is observed that viscous effects tend to lower and broaden the peaks of stopping power, wake potential and plasmon density oscillations. Quantum effects modify the position and shape of these peaks, which might be essential for optimizing conditions in processes like materials engineering. The coupling of viscous and quantum effects significantly impacts the excitation of surface magnetoplasmons, with notable variations across different metals, indicating that material properties influence the plasmonic behavior.
Results in PhysicsMATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍:
Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics.
Results in Physics welcomes three types of papers:
1. Full research papers
2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as:
- Data and/or a plot plus a description
- Description of a new method or instrumentation
- Negative results
- Concept or design study
3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.