{"title":"Not always optimal: Fungal fruiting triggers indicate climate sensitivity in cooler regions","authors":"Carrie Andrew","doi":"10.1016/j.funeco.2025.101416","DOIUrl":null,"url":null,"abstract":"<div><div>Many fungi have environmentally-based fruiting triggers, which requires their quantification within the context of climate change. Species' optima were modelled for 127 commonly recorded European taxa for climate and weather conditions that were associated with their fruiting occurrences. Trends were reported based on their land-use biome associations, and attributes of species’ nutritional modes and the substrates they fruit from. The optimal fruiting conditions for over one third of the species demonstrated likely sensitivity to climate warming, whose optima predominantly clustered in the boreal forest and tundra, i.e., in regions most in peril for further warming. Niche breadths were narrower for terrestrially fruiting species, which suggested that daily weather perturbations will cause greater knock-on effects to terrestrial than wood-inhabiting taxa. All species were sensitive to extremes in daily recorded temperatures. These results add to the mounting evidence that biodiversity in high-latitude regions is increasingly threatened from warming temperatures.</div></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"75 ","pages":"Article 101416"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1754504825000066","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many fungi have environmentally-based fruiting triggers, which requires their quantification within the context of climate change. Species' optima were modelled for 127 commonly recorded European taxa for climate and weather conditions that were associated with their fruiting occurrences. Trends were reported based on their land-use biome associations, and attributes of species’ nutritional modes and the substrates they fruit from. The optimal fruiting conditions for over one third of the species demonstrated likely sensitivity to climate warming, whose optima predominantly clustered in the boreal forest and tundra, i.e., in regions most in peril for further warming. Niche breadths were narrower for terrestrially fruiting species, which suggested that daily weather perturbations will cause greater knock-on effects to terrestrial than wood-inhabiting taxa. All species were sensitive to extremes in daily recorded temperatures. These results add to the mounting evidence that biodiversity in high-latitude regions is increasingly threatened from warming temperatures.
期刊介绍:
Fungal Ecology publishes investigations into all aspects of fungal ecology, including the following (not exclusive): population dynamics; adaptation; evolution; role in ecosystem functioning, nutrient cycling, decomposition, carbon allocation; ecophysiology; intra- and inter-specific mycelial interactions, fungus-plant (pathogens, mycorrhizas, lichens, endophytes), fungus-invertebrate and fungus-microbe interaction; genomics and (evolutionary) genetics; conservation and biodiversity; remote sensing; bioremediation and biodegradation; quantitative and computational aspects - modelling, indicators, complexity, informatics. The usual prerequisites for publication will be originality, clarity, and significance as relevant to a better understanding of the ecology of fungi.