Not always optimal: Fungal fruiting triggers indicate climate sensitivity in cooler regions

IF 1.9 3区 环境科学与生态学 Q3 ECOLOGY Fungal Ecology Pub Date : 2025-02-21 DOI:10.1016/j.funeco.2025.101416
Carrie Andrew
{"title":"Not always optimal: Fungal fruiting triggers indicate climate sensitivity in cooler regions","authors":"Carrie Andrew","doi":"10.1016/j.funeco.2025.101416","DOIUrl":null,"url":null,"abstract":"<div><div>Many fungi have environmentally-based fruiting triggers, which requires their quantification within the context of climate change. Species' optima were modelled for 127 commonly recorded European taxa for climate and weather conditions that were associated with their fruiting occurrences. Trends were reported based on their land-use biome associations, and attributes of species’ nutritional modes and the substrates they fruit from. The optimal fruiting conditions for over one third of the species demonstrated likely sensitivity to climate warming, whose optima predominantly clustered in the boreal forest and tundra, i.e., in regions most in peril for further warming. Niche breadths were narrower for terrestrially fruiting species, which suggested that daily weather perturbations will cause greater knock-on effects to terrestrial than wood-inhabiting taxa. All species were sensitive to extremes in daily recorded temperatures. These results add to the mounting evidence that biodiversity in high-latitude regions is increasingly threatened from warming temperatures.</div></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"75 ","pages":"Article 101416"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1754504825000066","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Many fungi have environmentally-based fruiting triggers, which requires their quantification within the context of climate change. Species' optima were modelled for 127 commonly recorded European taxa for climate and weather conditions that were associated with their fruiting occurrences. Trends were reported based on their land-use biome associations, and attributes of species’ nutritional modes and the substrates they fruit from. The optimal fruiting conditions for over one third of the species demonstrated likely sensitivity to climate warming, whose optima predominantly clustered in the boreal forest and tundra, i.e., in regions most in peril for further warming. Niche breadths were narrower for terrestrially fruiting species, which suggested that daily weather perturbations will cause greater knock-on effects to terrestrial than wood-inhabiting taxa. All species were sensitive to extremes in daily recorded temperatures. These results add to the mounting evidence that biodiversity in high-latitude regions is increasingly threatened from warming temperatures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fungal Ecology
Fungal Ecology 环境科学-生态学
CiteScore
5.80
自引率
3.40%
发文量
51
审稿时长
3 months
期刊介绍: Fungal Ecology publishes investigations into all aspects of fungal ecology, including the following (not exclusive): population dynamics; adaptation; evolution; role in ecosystem functioning, nutrient cycling, decomposition, carbon allocation; ecophysiology; intra- and inter-specific mycelial interactions, fungus-plant (pathogens, mycorrhizas, lichens, endophytes), fungus-invertebrate and fungus-microbe interaction; genomics and (evolutionary) genetics; conservation and biodiversity; remote sensing; bioremediation and biodegradation; quantitative and computational aspects - modelling, indicators, complexity, informatics. The usual prerequisites for publication will be originality, clarity, and significance as relevant to a better understanding of the ecology of fungi.
期刊最新文献
The cumulative effects of precipitation determine the occurrence of Tricholoma matsutake fruiting bodies Editorial Board Not always optimal: Fungal fruiting triggers indicate climate sensitivity in cooler regions Strong climatic effects on ectomycorrhizal fungal communities at seedling establishment stage in ice-age relict forests Secondary metabolites and their impact on symbiotic interactions in the ambrosia fungus Geosmithia eupagioceri
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1