Real-time quantification of activated sludge concentration and viscosity through deep learning of microscopic images

IF 14 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Science and Ecotechnology Pub Date : 2025-01-28 DOI:10.1016/j.ese.2025.100527
Hewen Li , Yu Tao , Tiefu Xu , Hongcheng Wang , Min Yang , Ying Chen , Aijie Wang
{"title":"Real-time quantification of activated sludge concentration and viscosity through deep learning of microscopic images","authors":"Hewen Li ,&nbsp;Yu Tao ,&nbsp;Tiefu Xu ,&nbsp;Hongcheng Wang ,&nbsp;Min Yang ,&nbsp;Ying Chen ,&nbsp;Aijie Wang","doi":"10.1016/j.ese.2025.100527","DOIUrl":null,"url":null,"abstract":"<div><div>The parameters of activatedg sludge are crucial for the daily operation of wastewater treatment plants (WWTPs). In particular, mixed liquor suspended solids (MLSS) and apparent viscosity provide metrics for the biomass and rheological properties of activated sludge. Traditional methods for determining these parameters are time-consuming, require separate measurements for each index, and fail to provide real-time data for future ‘smart’ WWTPs. Here we show a real-time online microscopic image data analysis system that quantitatively identifies MLSS and apparent viscosity. Microscopic videos of activated sludge are captured in lab-scale sequencing batch reactors under chemical oxygen demand shock, yielding 41482 high-quality images. The Xception convolutional neural network architecture is used to establish both qualitative and quantitative correlations between these microscopic images and MLSS/apparent viscosity. The accuracies of qualitative identification for MLSS and apparent viscosity are both higher than 97%, and the quantitative correlation coefficients are 0.95 and 0.96, respectively. This quantitative correlation between microscopic images of activated sludge and its physical parameters, specifically MLSS and apparent viscosity, provides a basis for real-time online measurements of activated sludge parameters in WWTPs.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"24 ","pages":"Article 100527"},"PeriodicalIF":14.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498425000055","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The parameters of activatedg sludge are crucial for the daily operation of wastewater treatment plants (WWTPs). In particular, mixed liquor suspended solids (MLSS) and apparent viscosity provide metrics for the biomass and rheological properties of activated sludge. Traditional methods for determining these parameters are time-consuming, require separate measurements for each index, and fail to provide real-time data for future ‘smart’ WWTPs. Here we show a real-time online microscopic image data analysis system that quantitatively identifies MLSS and apparent viscosity. Microscopic videos of activated sludge are captured in lab-scale sequencing batch reactors under chemical oxygen demand shock, yielding 41482 high-quality images. The Xception convolutional neural network architecture is used to establish both qualitative and quantitative correlations between these microscopic images and MLSS/apparent viscosity. The accuracies of qualitative identification for MLSS and apparent viscosity are both higher than 97%, and the quantitative correlation coefficients are 0.95 and 0.96, respectively. This quantitative correlation between microscopic images of activated sludge and its physical parameters, specifically MLSS and apparent viscosity, provides a basis for real-time online measurements of activated sludge parameters in WWTPs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
20.40
自引率
6.30%
发文量
11
审稿时长
18 days
期刊介绍: Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.
期刊最新文献
Hypersaline organic wastewater treatment: Biotechnological advances and engineering challenges Towards sustainable agroecosystems: A life cycle assessment review of soil-biodegradable and traditional plastic mulch films Phytoremediation of microplastics by water hyacinth Urban fabric decoded: High-precision building material identification via deep learning and remote sensing Towards equitable carbon responsibility: Integrating trade-related emissions and carbon sinks in urban decarbonization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1