Elton J F Chaves, João Sartori, Whendel M Santos, Carlos H B Cruz, Emmanuel N Mhrous, Manassés F Nacimento-Filho, Matheus V F Ferraz, Roberto D Lins
{"title":"Estimating Absolute Protein-Protein Binding Free Energies by a Super Learner Model.","authors":"Elton J F Chaves, João Sartori, Whendel M Santos, Carlos H B Cruz, Emmanuel N Mhrous, Manassés F Nacimento-Filho, Matheus V F Ferraz, Roberto D Lins","doi":"10.1021/acs.jcim.4c01641","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-protein binding is central to most biochemical processes of all living beings. Its importance underlies mechanisms ranging from cell interactions to metabolic control, but also to <i>ex vivo</i> biotechnology, such as the development of therapeutic monoclonal antibodies, the engineering of enzymes for industrial biocatalysis, the development of biosensors for disease detection, and the assembly of artificial protein complexes for drug screening. Therefore, predicting the strength of their association allows for understanding the molecular mechanisms and ultimately controlling them. We devised a machine learning ensemble model that uses Rosetta-based quantities to predict binding free energies of protein-protein complexes with accuracy rivaling both computationally demanding methods and currently available ML/DL tools. The method was encoded into an application Python pipeline named PBEE, which stands for Protein Binding Energy Estimator, allowing a rapid calculation of the absolute binding free energies of protein complexes from their PDB coordinates.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01641","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Protein-protein binding is central to most biochemical processes of all living beings. Its importance underlies mechanisms ranging from cell interactions to metabolic control, but also to ex vivo biotechnology, such as the development of therapeutic monoclonal antibodies, the engineering of enzymes for industrial biocatalysis, the development of biosensors for disease detection, and the assembly of artificial protein complexes for drug screening. Therefore, predicting the strength of their association allows for understanding the molecular mechanisms and ultimately controlling them. We devised a machine learning ensemble model that uses Rosetta-based quantities to predict binding free energies of protein-protein complexes with accuracy rivaling both computationally demanding methods and currently available ML/DL tools. The method was encoded into an application Python pipeline named PBEE, which stands for Protein Binding Energy Estimator, allowing a rapid calculation of the absolute binding free energies of protein complexes from their PDB coordinates.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.