Guoqiang Wang, Kailun Fang, Yongliang Shang, Xu Zhou, Qiqi Shao, Si Li, Ping Wang, Charlie Degui Chen, Liangran Zhang, Shunxin Wang
{"title":"Testis-Specific PDHA2 Is Required for Proper Meiotic Recombination and Chromosome Organisation During Spermatogenesis.","authors":"Guoqiang Wang, Kailun Fang, Yongliang Shang, Xu Zhou, Qiqi Shao, Si Li, Ping Wang, Charlie Degui Chen, Liangran Zhang, Shunxin Wang","doi":"10.1111/cpr.70003","DOIUrl":null,"url":null,"abstract":"<p><p>Proper segregation of homologous chromosomes during meiosis requires crossovers that are tightly regulated by the chromosome structure. PDHA2 is the testis-specific paralog of PDHA1, a core subunit of pyruvate dehydrogenase. However, its role during spermatogenesis is unclear. We show that PDHA2 knockout results in male infertility in mice, but meiotic DSBs in spermatocytes occur normally and are efficiently repaired. Detailed analysis reveals that mid/late recombination intermediates are moderately reduced, resulting in fewer crossovers and many chromosomes without a crossover. Furthermore, defective chromosome structure is observed, including aberrant histone modifications, defective chromosome ends, precocious release of REC8 from chromosomes and fragmented chromosome axes after pachytene. These defects contribute to the failure of pyruvate conversion to acetyl-CoA, resulting in decreased acetyl-CoA and precursors for metabolites and energy in the absence of PDHA2. These findings reveal the important functions of PDHA2 in ensuring proper crossover formation and in modulating chromosome structure during spermatogenesis.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70003"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.70003","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Proper segregation of homologous chromosomes during meiosis requires crossovers that are tightly regulated by the chromosome structure. PDHA2 is the testis-specific paralog of PDHA1, a core subunit of pyruvate dehydrogenase. However, its role during spermatogenesis is unclear. We show that PDHA2 knockout results in male infertility in mice, but meiotic DSBs in spermatocytes occur normally and are efficiently repaired. Detailed analysis reveals that mid/late recombination intermediates are moderately reduced, resulting in fewer crossovers and many chromosomes without a crossover. Furthermore, defective chromosome structure is observed, including aberrant histone modifications, defective chromosome ends, precocious release of REC8 from chromosomes and fragmented chromosome axes after pachytene. These defects contribute to the failure of pyruvate conversion to acetyl-CoA, resulting in decreased acetyl-CoA and precursors for metabolites and energy in the absence of PDHA2. These findings reveal the important functions of PDHA2 in ensuring proper crossover formation and in modulating chromosome structure during spermatogenesis.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.