Computational Identification and Anti-Inflammatory Evaluation of T19093 as a TLR4/MD2 Inhibitor.

IF 2.9 4区 医学 Q3 CHEMISTRY, MEDICINAL Current topics in medicinal chemistry Pub Date : 2025-02-18 DOI:10.2174/0115680266345918250212144023
Kuida Chen, Ke Shi, Tong Jin, Shipeng Lu, Wu Yin
{"title":"Computational Identification and Anti-Inflammatory Evaluation of T19093 as a TLR4/MD2 Inhibitor.","authors":"Kuida Chen, Ke Shi, Tong Jin, Shipeng Lu, Wu Yin","doi":"10.2174/0115680266345918250212144023","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The TLR4 (Toll-like receptor 4)/MD2 (Myeloid differentiation protein-2) is a crucial target for developing novel anti-inflammatory drugs. Nevertheless, current inhibitors often have significant adverse effects, necessitating the discovery of safer alternatives.</p><p><strong>Objective: </strong>The investigation aims to identify novel TLR4/MD2 inhibitors with potential antiinflammatory activity using machine learning and virtual screening technology.</p><p><strong>Methods: </strong>A machine-learning model was created using the MACCS (Molecular ACCess Systems) key fingerprint. Subsequently, virtual screening and molecular docking were used to evaluate candidate compounds' binding free energy to the TLR4/MD2 complex. Furthermore, ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction was used to assess the druggable properties of compounds. The most promising compound, T19093, was considered for molecular dynamic simulation. Finally, the anti-inflammatory efficacy of T19093 was further validated using LPS-treated THP-1 cells.</p><p><strong>Results: </strong>T19093, a polyphenolic compound isolated from the Gnaphalium plant genus, showed strong binding to key residues of the TLR4/MD2 complex, with a docking score of -11.29 kcal/mol. Furthermore, ADMET predicted that T19093 has good pharmacokinetic properties and balanced physicochemical properties. Moreover, molecular dynamics simulation confirmed stable binding between T19093 and TLR4/MD2 complex. Finally, it was found that T19093 alleviated LPSinduced inflammatory response by inhibiting the activation of TLR4/MD2 downstream signaling pathways and disrupting the TLR4/MD2 interaction.</p><p><strong>Conclusion: </strong>T19093 was discovered as a potential novel TLR4/MD2 inhibitor using machine learning and virtual screening techniques and showed potent anti-inflammatory activity, which could provide a new therapeutic alternative for the treatment of inflammation-related diseases.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266345918250212144023","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The TLR4 (Toll-like receptor 4)/MD2 (Myeloid differentiation protein-2) is a crucial target for developing novel anti-inflammatory drugs. Nevertheless, current inhibitors often have significant adverse effects, necessitating the discovery of safer alternatives.

Objective: The investigation aims to identify novel TLR4/MD2 inhibitors with potential antiinflammatory activity using machine learning and virtual screening technology.

Methods: A machine-learning model was created using the MACCS (Molecular ACCess Systems) key fingerprint. Subsequently, virtual screening and molecular docking were used to evaluate candidate compounds' binding free energy to the TLR4/MD2 complex. Furthermore, ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction was used to assess the druggable properties of compounds. The most promising compound, T19093, was considered for molecular dynamic simulation. Finally, the anti-inflammatory efficacy of T19093 was further validated using LPS-treated THP-1 cells.

Results: T19093, a polyphenolic compound isolated from the Gnaphalium plant genus, showed strong binding to key residues of the TLR4/MD2 complex, with a docking score of -11.29 kcal/mol. Furthermore, ADMET predicted that T19093 has good pharmacokinetic properties and balanced physicochemical properties. Moreover, molecular dynamics simulation confirmed stable binding between T19093 and TLR4/MD2 complex. Finally, it was found that T19093 alleviated LPSinduced inflammatory response by inhibiting the activation of TLR4/MD2 downstream signaling pathways and disrupting the TLR4/MD2 interaction.

Conclusion: T19093 was discovered as a potential novel TLR4/MD2 inhibitor using machine learning and virtual screening techniques and showed potent anti-inflammatory activity, which could provide a new therapeutic alternative for the treatment of inflammation-related diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
2.90%
发文量
186
审稿时长
3-8 weeks
期刊介绍: Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.
期刊最新文献
Computational Identification and Anti-Inflammatory Evaluation of T19093 as a TLR4/MD2 Inhibitor. Recent Advances in Diosmetin: Pharmacological, Pharmacokinetic, and Toxicological Profile. Therapeutic Potential of Quercetin in Type 2 Diabetes Based on a Network Pharmacology Study. Combating Drug Resistance in Lung Cancer: Exploring the Synergistic Potential of Metformin and Cisplatin in a Novel Combination Therapy; A Systematic Review. WISP3/CCN6 Adipocytokine Marker in Patients with Non-alcoholic Fatty Liver Disease (NAFLD) and its Association with Some Risk Factors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1