Reactive oxygen species-mediated cytotoxic and DNA-damaging mechanism of N4-hydroxycytidine, a metabolite of the COVID-19 therapeutic drug molnupiravir.

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Free Radical Research Pub Date : 2025-03-06 DOI:10.1080/10715762.2025.2469738
Yurie Mori, Rinya Yogo, Hatasu Kobayashi, Hirotaka Katsuzaki, Yuichiro Hirao, Shinya Kato, Hirokazu Kotani, Shosuke Kawanishi, Mariko Murata, Shinji Oikawa
{"title":"Reactive oxygen species-mediated cytotoxic and DNA-damaging mechanism of <i>N</i><sup>4</sup>-hydroxycytidine, a metabolite of the COVID-19 therapeutic drug molnupiravir.","authors":"Yurie Mori, Rinya Yogo, Hatasu Kobayashi, Hirotaka Katsuzaki, Yuichiro Hirao, Shinya Kato, Hirokazu Kotani, Shosuke Kawanishi, Mariko Murata, Shinji Oikawa","doi":"10.1080/10715762.2025.2469738","DOIUrl":null,"url":null,"abstract":"<p><p>Molnupiravir is a prodrug of the antiviral ribonucleoside analogue <i>N</i><sup>4</sup>-hydroxycytidine (NHC), for use in the treatment of coronavirus disease 2019 (COVID-19). However, it is generally considered that NHC-triphosphate is incorporated into the host genome to induce mutations. In our previous preliminary report, we proposed oxidative DNA damage by NHC <i>via</i> cytidine deaminase (CDA)-mediated ROS formation. In the present study, we investigated cell viability using the HL-60 human leukemia cell line and its H<sub>2</sub>O<sub>2</sub>-resistant clone, HP100 cells. The survival rate was significantly reduced in HL-60 cells treated with NHC, but not in HP100 cells. LC-MS analysis revealed that uridine formation occurred from CDA-treated NHC, suggesting that CDA metabolizes NHC to uridine and hydroxylamine. We clarified mechanisms of CDA-mediated reactive oxygen species (ROS) generation and DNA damage by NHC using isolated DNA. CDA-treated NHC induced DNA damage in the presence of Cu(II). The DNA damage was enhanced by NADH addition and piperidine treatment. CDA-treated NHC and Cu(II) caused piperidine-labile sites at thymine, cytosine, and guanine, and the DNA cleavage pattern was similar to that of hydroxylamine. Catalase and bathocuproine inhibited the DNA damage, indicating the involvement of H<sub>2</sub>O<sub>2</sub> and Cu(I). An indicator of oxidative DNA damage, 8-oxo-7,8-dihydro-2'-deoxyguanosine formation by CDA-treated NHC, was lower under hypoxic conditions than under normal conditions. Therefore, hydroxylamine, possibly produced from NHC treated with CDA, could induce metal-dependent H<sub>2</sub>O<sub>2</sub> generation during the redox reactions, suggesting that oxidative DNA damage induced by ROS plays an important role in molnupiravir-related cytotoxicity and mutagenicity.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"1-10"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2025.2469738","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Molnupiravir is a prodrug of the antiviral ribonucleoside analogue N4-hydroxycytidine (NHC), for use in the treatment of coronavirus disease 2019 (COVID-19). However, it is generally considered that NHC-triphosphate is incorporated into the host genome to induce mutations. In our previous preliminary report, we proposed oxidative DNA damage by NHC via cytidine deaminase (CDA)-mediated ROS formation. In the present study, we investigated cell viability using the HL-60 human leukemia cell line and its H2O2-resistant clone, HP100 cells. The survival rate was significantly reduced in HL-60 cells treated with NHC, but not in HP100 cells. LC-MS analysis revealed that uridine formation occurred from CDA-treated NHC, suggesting that CDA metabolizes NHC to uridine and hydroxylamine. We clarified mechanisms of CDA-mediated reactive oxygen species (ROS) generation and DNA damage by NHC using isolated DNA. CDA-treated NHC induced DNA damage in the presence of Cu(II). The DNA damage was enhanced by NADH addition and piperidine treatment. CDA-treated NHC and Cu(II) caused piperidine-labile sites at thymine, cytosine, and guanine, and the DNA cleavage pattern was similar to that of hydroxylamine. Catalase and bathocuproine inhibited the DNA damage, indicating the involvement of H2O2 and Cu(I). An indicator of oxidative DNA damage, 8-oxo-7,8-dihydro-2'-deoxyguanosine formation by CDA-treated NHC, was lower under hypoxic conditions than under normal conditions. Therefore, hydroxylamine, possibly produced from NHC treated with CDA, could induce metal-dependent H2O2 generation during the redox reactions, suggesting that oxidative DNA damage induced by ROS plays an important role in molnupiravir-related cytotoxicity and mutagenicity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
期刊最新文献
Hydrogen alleviates myocardial infarction by impeding apoptosis via ROS-mediated mitochondrial endogenous pathway. Reactive oxygen species-mediated cytotoxic and DNA-damaging mechanism of N4-hydroxycytidine, a metabolite of the COVID-19 therapeutic drug molnupiravir. Examining the prognostic and clinicopathological significance of GPX4 in human cancers: a meta-analysis. FABP3 promotes cell apoptosis and oxidative stress by regulating ferroptosis in lens epithelial cells. Down-regulation of Selenoprotein K impairs the proliferation and differentiation of chicken skeletal muscle satellite cells by inhibiting the Nrf2 antioxidant signaling pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1