Hydrogen alleviates myocardial infarction by impeding apoptosis via ROS-mediated mitochondrial endogenous pathway.

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Free Radical Research Pub Date : 2025-03-07 DOI:10.1080/10715762.2025.2474014
Shuang Pan, Bin Wang, Mengshu Yu, Jiawen Zhang, Bowei Fan, Chaoqun Nie, Rentong Zou, Xinrui Yang, Zhuoqun Zhang, Xiaojian Hong, Wei Yang
{"title":"Hydrogen alleviates myocardial infarction by impeding apoptosis via ROS-mediated mitochondrial endogenous pathway.","authors":"Shuang Pan, Bin Wang, Mengshu Yu, Jiawen Zhang, Bowei Fan, Chaoqun Nie, Rentong Zou, Xinrui Yang, Zhuoqun Zhang, Xiaojian Hong, Wei Yang","doi":"10.1080/10715762.2025.2474014","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute myocardial infarction (AMI) is a deadly cardiovascular disease with no effective solution except for percutaneous coronary intervention and coronary artery bypass grafting. Inflammation and apoptosis of the injured myocardium after revascularization seriously affect the prognosis. Hydrogen possesses anti-inflammatory, anti-oxidative, and anti-apoptotic effects and may become a new treatment for AMI. This study explored the specific mechanism by which hydrogen operates during AMI treatment.</p><p><strong>Methods: </strong>Thirty Sprague-Dawley rats were randomly divided into three groups: control, myocardial infarction (MI), and myocardial infarction + hydrogen (MI+H<sub>2</sub>), each containing 10 rats. The MI rat model was established by ligation of the left anterior descending branch. The MI+H<sub>2</sub> group received 2% hydrogen inhalation treatment for 3 h/Bid.</p><p><strong>Results: </strong>Myocardial infarct size was evaluated using triphenyl tetrazolium chloride staining. Transmission electron microscopy showed reduced mitochondrial damage compared with the MI group. JC-1 staining, which indicates mitochondrial membrane potential, showed a low red/green fluorescence intensity ratio in the MI group compared to that in the control group, indicating mitochondrial membrane potential loss. After hydrogen inhalation, this ratio increased, suggesting partial recovery of membrane potential. In addition, mitochondrial ATP content, mitochondrial complex I, and mitochondrial complex III activity were significantly decreased in the MI group, which was improved after hydrogen administration. Western blotting analysis showed decreased Cyt-c protein levels in the myocardial mitochondria and increased levels in the cytoplasm of MI rats. Following hydrogen inhalation, the levels of ROS, 8-OHdG, and MDA that could represent oxidative stress injury significantly decreased. Besides, the expression of Cyt-C, Bax, cleaved-caspase-9, and cleaved-caspase-3 in MI group significantly increased, while the Bcl-2, TRX2, SOD2 expression decreased. The expression of these proteins in MI+H2 group was improved compared with the MI group.</p><p><strong>Conclusion: </strong>Overall, hydrogen inhalation reduces myocardial infarct size, improves mitochondrial dysfunction, and modulates the levels of apoptosis-related substances. Importantly, Hydrogen reduces acute myocardial infarction damage by downregulating ROS and upregulating antioxidant proteins.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"1-13"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2025.2474014","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Acute myocardial infarction (AMI) is a deadly cardiovascular disease with no effective solution except for percutaneous coronary intervention and coronary artery bypass grafting. Inflammation and apoptosis of the injured myocardium after revascularization seriously affect the prognosis. Hydrogen possesses anti-inflammatory, anti-oxidative, and anti-apoptotic effects and may become a new treatment for AMI. This study explored the specific mechanism by which hydrogen operates during AMI treatment.

Methods: Thirty Sprague-Dawley rats were randomly divided into three groups: control, myocardial infarction (MI), and myocardial infarction + hydrogen (MI+H2), each containing 10 rats. The MI rat model was established by ligation of the left anterior descending branch. The MI+H2 group received 2% hydrogen inhalation treatment for 3 h/Bid.

Results: Myocardial infarct size was evaluated using triphenyl tetrazolium chloride staining. Transmission electron microscopy showed reduced mitochondrial damage compared with the MI group. JC-1 staining, which indicates mitochondrial membrane potential, showed a low red/green fluorescence intensity ratio in the MI group compared to that in the control group, indicating mitochondrial membrane potential loss. After hydrogen inhalation, this ratio increased, suggesting partial recovery of membrane potential. In addition, mitochondrial ATP content, mitochondrial complex I, and mitochondrial complex III activity were significantly decreased in the MI group, which was improved after hydrogen administration. Western blotting analysis showed decreased Cyt-c protein levels in the myocardial mitochondria and increased levels in the cytoplasm of MI rats. Following hydrogen inhalation, the levels of ROS, 8-OHdG, and MDA that could represent oxidative stress injury significantly decreased. Besides, the expression of Cyt-C, Bax, cleaved-caspase-9, and cleaved-caspase-3 in MI group significantly increased, while the Bcl-2, TRX2, SOD2 expression decreased. The expression of these proteins in MI+H2 group was improved compared with the MI group.

Conclusion: Overall, hydrogen inhalation reduces myocardial infarct size, improves mitochondrial dysfunction, and modulates the levels of apoptosis-related substances. Importantly, Hydrogen reduces acute myocardial infarction damage by downregulating ROS and upregulating antioxidant proteins.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
期刊最新文献
Hydrogen alleviates myocardial infarction by impeding apoptosis via ROS-mediated mitochondrial endogenous pathway. Reactive oxygen species-mediated cytotoxic and DNA-damaging mechanism of N4-hydroxycytidine, a metabolite of the COVID-19 therapeutic drug molnupiravir. Examining the prognostic and clinicopathological significance of GPX4 in human cancers: a meta-analysis. FABP3 promotes cell apoptosis and oxidative stress by regulating ferroptosis in lens epithelial cells. Down-regulation of Selenoprotein K impairs the proliferation and differentiation of chicken skeletal muscle satellite cells by inhibiting the Nrf2 antioxidant signaling pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1