Characterizing heterologous protein burden in Komagataella phaffii.

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY FEMS yeast research Pub Date : 2025-02-19 DOI:10.1093/femsyr/foaf007
Louise La Barbera Kastberg, Irene Hjorth Jacobsen, Emre Özdemir, Christopher T Workman, Michael Krogh Jensen, Jochen Förster
{"title":"Characterizing heterologous protein burden in Komagataella phaffii.","authors":"Louise La Barbera Kastberg, Irene Hjorth Jacobsen, Emre Özdemir, Christopher T Workman, Michael Krogh Jensen, Jochen Förster","doi":"10.1093/femsyr/foaf007","DOIUrl":null,"url":null,"abstract":"<p><p>Yeast is a widely utilized chassis for heterologous protein production, with Komagataella phaffii well-established as a prominent non-conventional yeast in this field. Despite its widespread recognition, there remains considerable potential to further optimize these cell factories to meet high production demands in a cost-effective and sustainable manner. Understanding the cellular response to the challenges of heterologous protein production can equip genetic engineers with crucial knowledge to develop enhanced strategies for constructing more efficient cell factories. In this study, we explore the molecular response of various K. phaffii strains that produce either the human insulin precursor or Mambalgin-1, examining changes in transcription and changes in intra- and extracellular protein levels. Our findings provide valuable insights into the molecular mechanisms that regulate the behaviour of K. phaffii production strains under the stress of producing different heterologous proteins. We believe that these results will serve as a foundation for identifying new genetic targets to improve strain robustness and productivity. In conclusion, we present new cellular and molecular insights into the response of K. phaffii cell factories to the challenges of burdensome heterologous protein production and our findings point to different engineering strategies for improved cell factory performance.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foaf007","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Yeast is a widely utilized chassis for heterologous protein production, with Komagataella phaffii well-established as a prominent non-conventional yeast in this field. Despite its widespread recognition, there remains considerable potential to further optimize these cell factories to meet high production demands in a cost-effective and sustainable manner. Understanding the cellular response to the challenges of heterologous protein production can equip genetic engineers with crucial knowledge to develop enhanced strategies for constructing more efficient cell factories. In this study, we explore the molecular response of various K. phaffii strains that produce either the human insulin precursor or Mambalgin-1, examining changes in transcription and changes in intra- and extracellular protein levels. Our findings provide valuable insights into the molecular mechanisms that regulate the behaviour of K. phaffii production strains under the stress of producing different heterologous proteins. We believe that these results will serve as a foundation for identifying new genetic targets to improve strain robustness and productivity. In conclusion, we present new cellular and molecular insights into the response of K. phaffii cell factories to the challenges of burdensome heterologous protein production and our findings point to different engineering strategies for improved cell factory performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
FEMS yeast research
FEMS yeast research 生物-生物工程与应用微生物
CiteScore
5.70
自引率
6.20%
发文量
54
审稿时长
1 months
期刊介绍: FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.
期刊最新文献
Characterizing heterologous protein burden in Komagataella phaffii. BAHD acyltransferase from dragon fruit enables production of phyllocactin in engineered yeast. Challenges in elucidating ethylene glycol metabolism in Saccharomyces cerevisiae. Exploring pectinolytic yeast diversity: toward effective polygalacturonase producers for applications in wine-making. A novel method for telomere length detection in fission yeast.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1