Gαq/11 aggravates acute lung injury in mice by promoting endoplasmic reticulum stress-mediated NETosis.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Medicine Pub Date : 2025-02-19 DOI:10.1186/s10020-025-01118-4
Qian Xiang, Yang Tian, Kai Yang, Yaqin Du, Jian Xie
{"title":"Gαq/11 aggravates acute lung injury in mice by promoting endoplasmic reticulum stress-mediated NETosis.","authors":"Qian Xiang, Yang Tian, Kai Yang, Yaqin Du, Jian Xie","doi":"10.1186/s10020-025-01118-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute lung injury (ALI) is distinguished by exaggerated neutrophil extracellular traps (NETs), elevated clinical mortality rates, and a paucity of targeted therapeutic interventions. The Gαq/11 protein, a member of the G protein subfamily, is an effective intervention target for a variety of diseases, but little is known about its role in ALI.</p><p><strong>Methods: </strong>In this study, a murine model of ALI induced by lipopolysaccharide (LPS) was utilized, employing myeloid cell-specific Gna11 knockout mice. The pulmonary pathology of mice was assessed and the lung samples were collected for immunofluorescence staining and RNA-sequencing analysis to elucidate the impact and underlying mechanisms of Gαq/11 in ALI. Mouse bone marrow-derived neutrophils were isolated and cultured for live-cell imaging to investigate the in vitro effects of Gαq/11.</p><p><strong>Results: </strong>The expression of Gαq/11 was found to be upregulated in the lung tissues of mice with ALI, coinciding with the increased expression of inflammatory genes. Myeloid cell-specific Gna11 deficience attenuated LPS-induced lung injury and the formation of NETs in mice. Mechanistically, Gαq/11 facilitates NETosis by promoting the activation of the endoplasmic reticulum (ER) stress sensor IRE1α in neutrophils and mediating the production of mitochondrial reactive oxygen species (mitoROS). Pharmacological inhibition of Gαq/11 using YM-254,890 was shown to reduce NETs formation and lung injury in mice.</p><p><strong>Conclusions: </strong>The upregulation of Gαq/11 exacerbates ALI through the promotion of ER stress-mediated NETosis. Consequently, Gαq/11 represents a potential therapeutic target for the treatment of ALI.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"67"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841161/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01118-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Acute lung injury (ALI) is distinguished by exaggerated neutrophil extracellular traps (NETs), elevated clinical mortality rates, and a paucity of targeted therapeutic interventions. The Gαq/11 protein, a member of the G protein subfamily, is an effective intervention target for a variety of diseases, but little is known about its role in ALI.

Methods: In this study, a murine model of ALI induced by lipopolysaccharide (LPS) was utilized, employing myeloid cell-specific Gna11 knockout mice. The pulmonary pathology of mice was assessed and the lung samples were collected for immunofluorescence staining and RNA-sequencing analysis to elucidate the impact and underlying mechanisms of Gαq/11 in ALI. Mouse bone marrow-derived neutrophils were isolated and cultured for live-cell imaging to investigate the in vitro effects of Gαq/11.

Results: The expression of Gαq/11 was found to be upregulated in the lung tissues of mice with ALI, coinciding with the increased expression of inflammatory genes. Myeloid cell-specific Gna11 deficience attenuated LPS-induced lung injury and the formation of NETs in mice. Mechanistically, Gαq/11 facilitates NETosis by promoting the activation of the endoplasmic reticulum (ER) stress sensor IRE1α in neutrophils and mediating the production of mitochondrial reactive oxygen species (mitoROS). Pharmacological inhibition of Gαq/11 using YM-254,890 was shown to reduce NETs formation and lung injury in mice.

Conclusions: The upregulation of Gαq/11 exacerbates ALI through the promotion of ER stress-mediated NETosis. Consequently, Gαq/11 represents a potential therapeutic target for the treatment of ALI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
期刊最新文献
A genome-wide association study identifies a novel East Asian-specific locus for dementia with Lewy bodies in Japanese subjects. Empagliflozin ameliorates renal and metabolic derangements in obese type 2 diabetic mice by blocking advanced glycation end product-receptor axis. Cholesterol promotes hair growth through activating sympathetic nerves and enhancing the proliferation of hair follicle stem cells. miR-6516-3p-mediated downregulation of the endogenous MMP-9 inhibitor RECK in mesangial cells might exacerbate lupus nephritis. Natural flavonoid Orientin restricts 5-Fluorouracil induced cancer stem cells mediated angiogenesis by regulating HIF1α and VEGFA in colorectal cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1