Discovery of New HER2 Inhibitors via Computational Docking, Pharmacophore Modeling, and Machine Learning.

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Molecular Informatics Pub Date : 2025-02-01 DOI:10.1002/minf.202400336
Aseel Yasin Matrouk, Haneen Mohammad, Safa Daoud, Mutasem Omar Taha
{"title":"Discovery of New HER2 Inhibitors via Computational Docking, Pharmacophore Modeling, and Machine Learning.","authors":"Aseel Yasin Matrouk, Haneen Mohammad, Safa Daoud, Mutasem Omar Taha","doi":"10.1002/minf.202400336","DOIUrl":null,"url":null,"abstract":"<p><p>The human epidermal growth factor receptor 2 (HER2) is a critical oncogene implicated in the development of various aggressive cancers, particularly breast cancer. Discovering novel HER2 inhibitors is crucial for expanding therapeutic options for HER2-related malignancies. In this study, we present a computational workflow that focuses on generating pharmacophores derived from docked poses of a selected list of 15 diverse, potent HER2 inhibitors, utilizing flexible docking. The resulting pharmacophores, along with other physicochemical molecular descriptors, were then evaluated in a machine learning-quantitative structure-activity relationship (ML-QSAR) analysis against 1,272 HER2 inhibitors. Several machine learning methods were assessed, and a genetic function algorithm (GFA) was employed for feature selection. Ultimately, GFA combined with Bagging and J48Graft classifiers produced the best self-consistent and predictive models. These models highlighted the significance of two pharmacophores, Hypo_1 and Hypo_2, in distinguishing potent from less active inhibitors. The successful ML-QSAR models and their associated pharmacophores were used to screen the National Cancer Institute (NCI) database for novel HER2 inhibitors. Three promising anti-HER2 leads were identified, with the top-performing lead demonstrating an experimental anti-HER2 IC<sub>50</sub> value of 3.85 μM. Notably, the three inhibitors exhibited distinct chemical scaffolds compared to existing HER2 inhibitors, as indicated by principal component analysis.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"44 2","pages":"e202400336"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400336","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The human epidermal growth factor receptor 2 (HER2) is a critical oncogene implicated in the development of various aggressive cancers, particularly breast cancer. Discovering novel HER2 inhibitors is crucial for expanding therapeutic options for HER2-related malignancies. In this study, we present a computational workflow that focuses on generating pharmacophores derived from docked poses of a selected list of 15 diverse, potent HER2 inhibitors, utilizing flexible docking. The resulting pharmacophores, along with other physicochemical molecular descriptors, were then evaluated in a machine learning-quantitative structure-activity relationship (ML-QSAR) analysis against 1,272 HER2 inhibitors. Several machine learning methods were assessed, and a genetic function algorithm (GFA) was employed for feature selection. Ultimately, GFA combined with Bagging and J48Graft classifiers produced the best self-consistent and predictive models. These models highlighted the significance of two pharmacophores, Hypo_1 and Hypo_2, in distinguishing potent from less active inhibitors. The successful ML-QSAR models and their associated pharmacophores were used to screen the National Cancer Institute (NCI) database for novel HER2 inhibitors. Three promising anti-HER2 leads were identified, with the top-performing lead demonstrating an experimental anti-HER2 IC50 value of 3.85 μM. Notably, the three inhibitors exhibited distinct chemical scaffolds compared to existing HER2 inhibitors, as indicated by principal component analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
期刊最新文献
Exploration of the Global Minimum and Conical Intersection with Bayesian Optimization. Predicting the Price of Molecules Using Their Predicted Synthetic Pathways. KNIME Workflows for Chemoinformatic Characterization of Chemical Databases. MAYA (Multiple ActivitY Analyzer): An Open Access Tool to Explore Structure-Multiple Activity Relationships in the Chemical Universe. Prediction of the Appropriate Temperature and Pressure for Polymer Dissolution Using Machine Learning Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1