{"title":"Regulatory Effects of Cooperativity and Signal Profile on Adaptive Dynamics in Incoherent Feedforward Loop Networks.","authors":"Necmettin Yildirim, Thomas Brew, Ahmet Ay","doi":"10.1177/14343207241306092","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular adaptation to external signals is essential for biological functions, and it is an important field of interest in systems biology. This study examines the impact of cooperativity on the adaptation response of the Incoherent Feedforward Loop (IFFL) network motif to various signal profiles. Through comprehensive simulations, we studied how the IFFL motif responds to constant and pulse-type signals under varying levels of cooperativity. The results of our study demonstrate that positive cooperativity generally enhances the system's ability to adapt to different signal profiles. Nevertheless, given specific signal profiles, higher levels of cooperativity may decrease the system's adaptability. On the other hand, the adaptive response breaks down for negative cooperativity. For constant signals, increased positive cooperativity leads to a response with higher amplitude, and it accelerates the response time but delays the return time required to settle back down to the pre-stimulus state. Upon signal cessation, high positive cooperativity not only slows the system's response and return times but, in some cases, can lead to a complete temporary halt in response. For the pulse-like signal, cooperativity increases the maximum amplitude of the oscillatory response. These insights highlight the delicate balance between cooperativity and signal profile in cellular adaptation mechanisms involving the IFFL network motif.</p>","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":"16 1","pages":"14343207241306092"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14343207241306092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular adaptation to external signals is essential for biological functions, and it is an important field of interest in systems biology. This study examines the impact of cooperativity on the adaptation response of the Incoherent Feedforward Loop (IFFL) network motif to various signal profiles. Through comprehensive simulations, we studied how the IFFL motif responds to constant and pulse-type signals under varying levels of cooperativity. The results of our study demonstrate that positive cooperativity generally enhances the system's ability to adapt to different signal profiles. Nevertheless, given specific signal profiles, higher levels of cooperativity may decrease the system's adaptability. On the other hand, the adaptive response breaks down for negative cooperativity. For constant signals, increased positive cooperativity leads to a response with higher amplitude, and it accelerates the response time but delays the return time required to settle back down to the pre-stimulus state. Upon signal cessation, high positive cooperativity not only slows the system's response and return times but, in some cases, can lead to a complete temporary halt in response. For the pulse-like signal, cooperativity increases the maximum amplitude of the oscillatory response. These insights highlight the delicate balance between cooperativity and signal profile in cellular adaptation mechanisms involving the IFFL network motif.
In Silico BiologyComputer Science-Computational Theory and Mathematics
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍:
The considerable "algorithmic complexity" of biological systems requires a huge amount of detailed information for their complete description. Although far from being complete, the overwhelming quantity of small pieces of information gathered for all kind of biological systems at the molecular and cellular level requires computational tools to be adequately stored and interpreted. Interpretation of data means to abstract them as much as allowed to provide a systematic, an integrative view of biology. Most of the presently available scientific journals focus either on accumulating more data from elaborate experimental approaches, or on presenting new algorithms for the interpretation of these data. Both approaches are meritorious.