Deep learning in gonarthrosis classification: a comparative study of model architectures and single vs. multi-model methods.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2025-02-05 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1413820
Sahika Betul Yayli, Kutay Kılıç, Salih Beyaz
{"title":"Deep learning in gonarthrosis classification: a comparative study of model architectures and single vs. multi-model methods.","authors":"Sahika Betul Yayli, Kutay Kılıç, Salih Beyaz","doi":"10.3389/frai.2025.1413820","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to classify Kellgren-Lawrence (KL) osteoarthritis stages using knee anteroposterior X-ray images by comparing two deep learning (DL) methodologies: a traditional single-model approach and a proposed multi-model approach. We addressed three core research questions in this study: (1) How effective are single-model and multi-model deep learning approaches in classifying KL stages? (2) How do seven convolutional neural network (CNN) architectures perform across four distinct deep learning tasks? (3) What is the impact of CLAHE (Contrast Limited Adaptive Histogram Equalization) on classification performance?</p><p><strong>Approach: </strong>We created a dataset of 14,607 annotated knee AP X-rays from three hospitals. The knee joint region was isolated using a YOLOv5 object detection model. The multi-model approach utilized three DL models: one for osteophyte detection, another for joint space narrowing analysis, and a third to combine these outputs with demographic and image data for KL classification. The single-model approach directly classified KL stages as a benchmark. Seven CNN architectures (NfNet-F0/F1, EfficientNet-B0/B3, Inception-ResNet-v2, VGG16) were trained with and without CLAHE augmentation.</p><p><strong>Results: </strong>The single-model approach achieved an F1-score of 0.763 and accuracy of 0.767, outperforming the multi-model strategy, which scored 0.736 and 0.740. Different models performed best across tasks, underscoring the need for task-specific architecture selection. CLAHE negatively impacted most models, with only one showing a marginal improvement of 0.3%.</p><p><strong>Conclusion: </strong>The single-model approach was more effective for KL grading, surpassing metrics in existing literature. These findings emphasize the importance of task-specific architectures and preprocessing. Future studies should explore ensemble modeling, advanced augmentations, and clinical validation to enhance applicability.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1413820"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835854/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1413820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study aims to classify Kellgren-Lawrence (KL) osteoarthritis stages using knee anteroposterior X-ray images by comparing two deep learning (DL) methodologies: a traditional single-model approach and a proposed multi-model approach. We addressed three core research questions in this study: (1) How effective are single-model and multi-model deep learning approaches in classifying KL stages? (2) How do seven convolutional neural network (CNN) architectures perform across four distinct deep learning tasks? (3) What is the impact of CLAHE (Contrast Limited Adaptive Histogram Equalization) on classification performance?

Approach: We created a dataset of 14,607 annotated knee AP X-rays from three hospitals. The knee joint region was isolated using a YOLOv5 object detection model. The multi-model approach utilized three DL models: one for osteophyte detection, another for joint space narrowing analysis, and a third to combine these outputs with demographic and image data for KL classification. The single-model approach directly classified KL stages as a benchmark. Seven CNN architectures (NfNet-F0/F1, EfficientNet-B0/B3, Inception-ResNet-v2, VGG16) were trained with and without CLAHE augmentation.

Results: The single-model approach achieved an F1-score of 0.763 and accuracy of 0.767, outperforming the multi-model strategy, which scored 0.736 and 0.740. Different models performed best across tasks, underscoring the need for task-specific architecture selection. CLAHE negatively impacted most models, with only one showing a marginal improvement of 0.3%.

Conclusion: The single-model approach was more effective for KL grading, surpassing metrics in existing literature. These findings emphasize the importance of task-specific architectures and preprocessing. Future studies should explore ensemble modeling, advanced augmentations, and clinical validation to enhance applicability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Deep learning in gonarthrosis classification: a comparative study of model architectures and single vs. multi-model methods. Large language models generating synthetic clinical datasets: a feasibility and comparative analysis with real-world perioperative data. Explainable correlation-based anomaly detection for Industrial Control Systems. Factors influencing trust in algorithmic decision-making: an indirect scenario-based experiment. Role of artificial intelligence in smart grid - a mini review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1