{"title":"Automated arrhythmia classification based on a pyramid dense connectivity layer and BiLSTM.","authors":"Xiangkui Wan, Xiaoyu Mei, Yunfan Chen, Jieqiang Luo, Luguo Hao","doi":"10.1177/09287329241290941","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Deep neural networks (DNNs) have recently been significantly applied to automatic arrhythmia classification. However, their classification accuracy still has room for improvement.</p><p><strong>Objectives: </strong>The aim of this study is to address the existing limitations in current models by developing a more effective approach for automatic arrhythmia classification. The specific objectives include enhancing the receptive field sizes to capture more detailed information across various temporal scales, and incorporating inter-channel correlations to improve the feature extraction process.</p><p><strong>Methods: </strong>This study proposes a pyramidal dense connectivity layer and bidirectional long short-term memory network (PDC-BiLSTM) to effectively extract waveform features across various temporal scales, which can capture the intricate details and the broader global information in the signals through a wide range of sensory fields. The efficient channel attention (ECA) is additionally introduced to dynamically allocate weights to each feature channel, assisting the model inefficiently prioritizing essential characteristics during the training process.</p><p><strong>Results: </strong>The experimental results on the MIT-BIH arrhythmia database showed that the overall classification accuracy of the proposed method under the intra-patient paradigm reached 99.82%, and the positive predictive value, sensitivity and F1 Score were 99.64%, 97.61% and 98.60% respectively; under the inter-patient paradigm, the overall accuracy was 96.30%.</p><p><strong>Conclusion: </strong>Compared with the latest research results in this field, the proposed model is also better than the existing models in terms of accuracy, which has the potential value of being applied to devices that assist in diagnosing cardiovascular diseases.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":"9287329241290941"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09287329241290941","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Deep neural networks (DNNs) have recently been significantly applied to automatic arrhythmia classification. However, their classification accuracy still has room for improvement.
Objectives: The aim of this study is to address the existing limitations in current models by developing a more effective approach for automatic arrhythmia classification. The specific objectives include enhancing the receptive field sizes to capture more detailed information across various temporal scales, and incorporating inter-channel correlations to improve the feature extraction process.
Methods: This study proposes a pyramidal dense connectivity layer and bidirectional long short-term memory network (PDC-BiLSTM) to effectively extract waveform features across various temporal scales, which can capture the intricate details and the broader global information in the signals through a wide range of sensory fields. The efficient channel attention (ECA) is additionally introduced to dynamically allocate weights to each feature channel, assisting the model inefficiently prioritizing essential characteristics during the training process.
Results: The experimental results on the MIT-BIH arrhythmia database showed that the overall classification accuracy of the proposed method under the intra-patient paradigm reached 99.82%, and the positive predictive value, sensitivity and F1 Score were 99.64%, 97.61% and 98.60% respectively; under the inter-patient paradigm, the overall accuracy was 96.30%.
Conclusion: Compared with the latest research results in this field, the proposed model is also better than the existing models in terms of accuracy, which has the potential value of being applied to devices that assist in diagnosing cardiovascular diseases.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).