An altruistic resource-sharing mechanism for synchronization: The energy-speed-accuracy tradeoff.

ArXiv Pub Date : 2025-02-04
Dongliang Zhang, Yuansheng Cao, Qi Ouyang, Yuhai Tu
{"title":"An altruistic resource-sharing mechanism for synchronization: The energy-speed-accuracy tradeoff.","authors":"Dongliang Zhang, Yuansheng Cao, Qi Ouyang, Yuhai Tu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Synchronization among a group of active agents is ubiquitous in nature. Although synchronization based on direct interactions between agents described by the Kuramoto model is well understood, the other general mechanism based on indirect interactions among agents sharing limited resources are less known. Here, we propose a minimal thermodynamically consistent model for the altruistic resource-sharing (ARS) mechanism wherein resources are needed for individual agent to advance but a more advanced agent has a lower competence to obtain resources. We show that while differential competence in ARS mechanism provides a negative feedback leading to synchronization it also breaks detailed balance and thus requires additional energy dissipation besides the cost of driving individual agents. By solving the model analytically, our study reveals a general tradeoff relation between the total energy dissipation rate and the two key performance measures of the system: average speed and synchronization accuracy. For a fixed dissipation rate, there is a distinct speed-accuracy Pareto front traversed by the scarcity of resources: scarcer resources lead to slower speed but more accurate synchronization. Increasing energy dissipation eases this tradeoff by pushing the speed-accuracy Pareto front outwards. The connections of our work to realistic biological systems such as the KaiABC system in cyanobacterial circadian clock and other theoretical results based on thermodynamic uncertainty relation are also discussed.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11838778/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Synchronization among a group of active agents is ubiquitous in nature. Although synchronization based on direct interactions between agents described by the Kuramoto model is well understood, the other general mechanism based on indirect interactions among agents sharing limited resources are less known. Here, we propose a minimal thermodynamically consistent model for the altruistic resource-sharing (ARS) mechanism wherein resources are needed for individual agent to advance but a more advanced agent has a lower competence to obtain resources. We show that while differential competence in ARS mechanism provides a negative feedback leading to synchronization it also breaks detailed balance and thus requires additional energy dissipation besides the cost of driving individual agents. By solving the model analytically, our study reveals a general tradeoff relation between the total energy dissipation rate and the two key performance measures of the system: average speed and synchronization accuracy. For a fixed dissipation rate, there is a distinct speed-accuracy Pareto front traversed by the scarcity of resources: scarcer resources lead to slower speed but more accurate synchronization. Increasing energy dissipation eases this tradeoff by pushing the speed-accuracy Pareto front outwards. The connections of our work to realistic biological systems such as the KaiABC system in cyanobacterial circadian clock and other theoretical results based on thermodynamic uncertainty relation are also discussed.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive Strategies for the Control of Complex Motor Skills: Recent Insights into Individual and Joint Actions. Metric-Guided Conformal Bounds for Probabilistic Image Reconstruction. RNA-FrameFlow: Flow Matching for de novo 3D RNA Backbone Design. Penalized Principal Component Analysis Using Smoothing. Self-Attention-Based Contextual Modulation Improves Neural System Identification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1