Yu Xi Huang, Simon Mahler, Maya Dickson, Aidin Abedi, Yu Tung Lo, Patrick D Lyden, Jonathan Russin, Charles Liu, Changhuei Yang
{"title":"Assessing Sensitivity of Brain-to-Scalp Blood Flows in Laser Speckle Imaging by Occluding the Superficial Temporal Artery.","authors":"Yu Xi Huang, Simon Mahler, Maya Dickson, Aidin Abedi, Yu Tung Lo, Patrick D Lyden, Jonathan Russin, Charles Liu, Changhuei Yang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral blood flow is a critical metric for cerebrovascular monitoring, with applications in stroke detection, brain injury evaluation, aging, and neurological disorders. Non-invasively measuring cerebral blood dynamics is challenging due to the scalp and skull, which obstruct direct brain access and contain their own blood dynamics that must be isolated. We developed an aggregated seven-channel speckle contrast optical spectroscopy system to measure blood flow and blood volume non-invasively. Each channel, with distinct source-to-detector distance, targeted different depths to detect scalp and brain blood dynamics separately. By briefly occluding the superficial temporal artery, which supplies blood only to the scalp, we isolated surface blood dynamics from brain signals. Results on 20 subjects show that scalp-sensitive channels experienced significant reductions in blood dynamics during occlusion, while brain-sensitive channels experienced minimal changes. This provides experimental evidence of brain-to-scalp sensitivity in optical measurements, highlighting optimal configuration for preferentially probing brain signals non-invasively.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11838768/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cerebral blood flow is a critical metric for cerebrovascular monitoring, with applications in stroke detection, brain injury evaluation, aging, and neurological disorders. Non-invasively measuring cerebral blood dynamics is challenging due to the scalp and skull, which obstruct direct brain access and contain their own blood dynamics that must be isolated. We developed an aggregated seven-channel speckle contrast optical spectroscopy system to measure blood flow and blood volume non-invasively. Each channel, with distinct source-to-detector distance, targeted different depths to detect scalp and brain blood dynamics separately. By briefly occluding the superficial temporal artery, which supplies blood only to the scalp, we isolated surface blood dynamics from brain signals. Results on 20 subjects show that scalp-sensitive channels experienced significant reductions in blood dynamics during occlusion, while brain-sensitive channels experienced minimal changes. This provides experimental evidence of brain-to-scalp sensitivity in optical measurements, highlighting optimal configuration for preferentially probing brain signals non-invasively.