A system genetics analysis uncovers the regulatory variants controlling drought response in wheat

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Journal Pub Date : 2025-02-20 DOI:10.1111/pbi.14605
Bin Chen, Yuling Liu, Yanyan Yang, Qiannan Wang, Shumin Li, Fangfang Li, Linying Du, Peiyin Zhang, Xuemin Wang, Shuangxing Zhang, Xiaoke Zhang, Zhensheng Kang, Xiaojie Wang, Hude Mao
{"title":"A system genetics analysis uncovers the regulatory variants controlling drought response in wheat","authors":"Bin Chen, Yuling Liu, Yanyan Yang, Qiannan Wang, Shumin Li, Fangfang Li, Linying Du, Peiyin Zhang, Xuemin Wang, Shuangxing Zhang, Xiaoke Zhang, Zhensheng Kang, Xiaojie Wang, Hude Mao","doi":"10.1111/pbi.14605","DOIUrl":null,"url":null,"abstract":"Plants activate a variable response to drought stress by modulating transcription of key genes. However, our knowledge of genetic variations governing gene expression in response to drought stress remains limited in natural germplasm. Here, we performed a comprehensive analysis of the transcriptional variability of 200 wheat accessions in response to drought stress by using a systems genetics approach integrating pan-transcriptome, co-expression networks, transcriptome-wide association study (TWAS), and expression quantitative trait loci (eQTLs) mapping. We identified 1621 genes and eight co-expression modules significantly correlated with wheat drought tolerance. We also defined 620 664 and 654 798 independent eQTLs associated with the expression of 17 429 and 18 080 eGenes under normal and drought stress conditions. Focusing on dynamic regulatory variants, we further identified 572 eQTL hotspots and constructed transcription factors governed drought-responsive network by the XGBoost model. Subsequently, by combining with genome-wide association study (GWAS), we uncovered a 369-bp insertion variant in the <i>TaKCS3</i> promoter containing multiple <i>cis</i>-regulatory elements recognized by eQTL hotspot-associated transcription factors that enhance its transcription. Further functional analysis indicated that elevating <i>TaKCS3</i> expression affects cuticular wax composition to reduce water loss during drought stress, and thereby increase drought tolerance. This study sheds light on the genome-wide genetic variants that influence dynamic transcriptional changes during drought stress and provides a valuable resource for the mining of drought-tolerant genes in the future.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"2 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14605","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plants activate a variable response to drought stress by modulating transcription of key genes. However, our knowledge of genetic variations governing gene expression in response to drought stress remains limited in natural germplasm. Here, we performed a comprehensive analysis of the transcriptional variability of 200 wheat accessions in response to drought stress by using a systems genetics approach integrating pan-transcriptome, co-expression networks, transcriptome-wide association study (TWAS), and expression quantitative trait loci (eQTLs) mapping. We identified 1621 genes and eight co-expression modules significantly correlated with wheat drought tolerance. We also defined 620 664 and 654 798 independent eQTLs associated with the expression of 17 429 and 18 080 eGenes under normal and drought stress conditions. Focusing on dynamic regulatory variants, we further identified 572 eQTL hotspots and constructed transcription factors governed drought-responsive network by the XGBoost model. Subsequently, by combining with genome-wide association study (GWAS), we uncovered a 369-bp insertion variant in the TaKCS3 promoter containing multiple cis-regulatory elements recognized by eQTL hotspot-associated transcription factors that enhance its transcription. Further functional analysis indicated that elevating TaKCS3 expression affects cuticular wax composition to reduce water loss during drought stress, and thereby increase drought tolerance. This study sheds light on the genome-wide genetic variants that influence dynamic transcriptional changes during drought stress and provides a valuable resource for the mining of drought-tolerant genes in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
期刊最新文献
Teach plants to fish based on CRISPR‐Cas system self‐evolution Mitochondrial gene editing and allotopic expression unveil the role of orf125 in the induction of male fertility in some Solanum spp. hybrids and in the evolution of the common potato Genetic manipulation of a COBRA gene, PtrCOB11, substantially alters wood properties in poplar Development of “Tea Rice” by engineering catechin biosynthesis in rice endosperm A DOF transcription factor GLW9/OsDOF25 regulates grain shape and tiller angle in rice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1