The genome of Vitis vinifera cv. Mgaloblishvili reveals resistance and susceptibility factors to downy mildew in the Rpv29 and Rpv31 loci

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Horticulture Research Pub Date : 2025-02-20 DOI:10.1093/hr/uhaf055
Valentina Ricciardi, Andrea Minio, Melanie Massonnet, Alexander H J Wittenberg, Rosa Figueroa-Balderas, David Maghradze, Silvia Laura Toffolatti, Osvaldo Failla, Dario Cantu, Gabriella De Lorenzis
{"title":"The genome of Vitis vinifera cv. Mgaloblishvili reveals resistance and susceptibility factors to downy mildew in the Rpv29 and Rpv31 loci","authors":"Valentina Ricciardi, Andrea Minio, Melanie Massonnet, Alexander H J Wittenberg, Rosa Figueroa-Balderas, David Maghradze, Silvia Laura Toffolatti, Osvaldo Failla, Dario Cantu, Gabriella De Lorenzis","doi":"10.1093/hr/uhaf055","DOIUrl":null,"url":null,"abstract":"Mgaloblishvili, a grapevine variety from Georgia (Southern Caucasus), exhibits a unique resistance mechanism against downy mildew. Mgaloblishvili resistance mechanism, involving pathogen recognition, activation of ethylene signalling pathway, structural and chemical defences, is mediated by the resistance loci Rpv29, Rpv30, and Rpv31. Mgaloblishvili genome was sequenced using PacBio HiFi, resulting in a chromosome-scale diploid assembly of 986 Mbp, including 58,912 predicted protein-coding genes across two phased chromosome sets. Comparative analysis with the susceptible PN40024 genome allowed us to identify differences in structure, gene content, and gene expression, as well as the impact of structural variants (SVs) and single nucleotide polymorphisms (SNPs) between Mgaloblishvili and PN40024 loci. Resistance haplotypes were identified through DNA sequencing of a self-pollinated Mgaloblishvili population. Compared to orthologous regions in PN40024, the Rpv29 locus in Mgaloblishvili exhibits reduced gene content, while the Rpv31 locus has similar gene content. In both Mgaloblishvili and PN40024, most genes within these loci are associated with plant defence pathways. While genes in both genotypes perform similar functions, SVs and SNPs were identified as key determinants of the structural differences between the genomes. Defining the Rpv30 locus was challenging due to ambiguous marker localization. DNA sequencing allowed us to identify resistance haplotypes for both Rpv30 and Rpv31 on Mgaloblishvili haplotype 2, though insights into the Rpv29 locus remain limited. Our results indicate that Mgaloblishvili's resistance is driven by numerous small SVs and SNPs, which lead to the loss of susceptibility factors and unique transcriptional regulation of defence-related genes.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"15 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf055","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Mgaloblishvili, a grapevine variety from Georgia (Southern Caucasus), exhibits a unique resistance mechanism against downy mildew. Mgaloblishvili resistance mechanism, involving pathogen recognition, activation of ethylene signalling pathway, structural and chemical defences, is mediated by the resistance loci Rpv29, Rpv30, and Rpv31. Mgaloblishvili genome was sequenced using PacBio HiFi, resulting in a chromosome-scale diploid assembly of 986 Mbp, including 58,912 predicted protein-coding genes across two phased chromosome sets. Comparative analysis with the susceptible PN40024 genome allowed us to identify differences in structure, gene content, and gene expression, as well as the impact of structural variants (SVs) and single nucleotide polymorphisms (SNPs) between Mgaloblishvili and PN40024 loci. Resistance haplotypes were identified through DNA sequencing of a self-pollinated Mgaloblishvili population. Compared to orthologous regions in PN40024, the Rpv29 locus in Mgaloblishvili exhibits reduced gene content, while the Rpv31 locus has similar gene content. In both Mgaloblishvili and PN40024, most genes within these loci are associated with plant defence pathways. While genes in both genotypes perform similar functions, SVs and SNPs were identified as key determinants of the structural differences between the genomes. Defining the Rpv30 locus was challenging due to ambiguous marker localization. DNA sequencing allowed us to identify resistance haplotypes for both Rpv30 and Rpv31 on Mgaloblishvili haplotype 2, though insights into the Rpv29 locus remain limited. Our results indicate that Mgaloblishvili's resistance is driven by numerous small SVs and SNPs, which lead to the loss of susceptibility factors and unique transcriptional regulation of defence-related genes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
期刊最新文献
The genome of Vitis vinifera cv. Mgaloblishvili reveals resistance and susceptibility factors to downy mildew in the Rpv29 and Rpv31 loci Integration of digital phenotyping, GWAS and transcriptomic analysis revealed a key gene for bud size in tea plant (Camellia sinensis) Genomic origin of Citrus reticulata “Unshiu” The UDP-glycosyltransferase PpUGT74F2 is involved in fruit immunity via modulating salicylic acid metabolism A chromosome-scale and haplotype-resolved genome assembly of tetraploid blackberry (Rubus L. subgenus Rubus Watson)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1