Wearable, washable piezoresistive pressure sensor based on polyurethane sponge coated with composite CNT/CB/TPU

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2025-02-20 DOI:10.1016/j.mtphys.2025.101681
Yan Wang, Wenbo Luo, Yading Wen, Jiafeng Zhao, Chang Chen, Chuo Chen, Xiao-Sheng Zhang
{"title":"Wearable, washable piezoresistive pressure sensor based on polyurethane sponge coated with composite CNT/CB/TPU","authors":"Yan Wang, Wenbo Luo, Yading Wen, Jiafeng Zhao, Chang Chen, Chuo Chen, Xiao-Sheng Zhang","doi":"10.1016/j.mtphys.2025.101681","DOIUrl":null,"url":null,"abstract":"Flexible pressure sensors are widely used in human health detection and human-machine interface interaction. In this paper, a 3D porous flexible pressure sensor based on carbon nanotubes (CNT)/carbon black (CB)/thermoplastic polyurethane (TPU)/polyurethane (PU) sponge is studied. This sensor exhibits good sensitivity, stability and washability. The sensing layer utilizes a conductive network formed by the synergistic effect of CNT and CB, providing excellent performance for the sensor. TPU functions as an adhesive, ensuring the bonding of the conductive material and providing washability to the sensor. Additionally, CB particles enhance the sensitivity of the sensor at low pressure range. The sensor demonstrates a response time of 119 ms, a recovery time of 59 ms, and maintains non-attenuating durability for more than 1,000 cycles. This multi-functional pressure sensor can provide a new platform for the designing and developing wearable health monitoring devices, as well as an efficient human-machine interface.","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"127 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtphys.2025.101681","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible pressure sensors are widely used in human health detection and human-machine interface interaction. In this paper, a 3D porous flexible pressure sensor based on carbon nanotubes (CNT)/carbon black (CB)/thermoplastic polyurethane (TPU)/polyurethane (PU) sponge is studied. This sensor exhibits good sensitivity, stability and washability. The sensing layer utilizes a conductive network formed by the synergistic effect of CNT and CB, providing excellent performance for the sensor. TPU functions as an adhesive, ensuring the bonding of the conductive material and providing washability to the sensor. Additionally, CB particles enhance the sensitivity of the sensor at low pressure range. The sensor demonstrates a response time of 119 ms, a recovery time of 59 ms, and maintains non-attenuating durability for more than 1,000 cycles. This multi-functional pressure sensor can provide a new platform for the designing and developing wearable health monitoring devices, as well as an efficient human-machine interface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
Coexisting Multi-valence States of Doped Ta into β-Ga2O3 Films on B-doped Mono-diamond to Achieve High Performance Heterojunction Detector NEA GaAs Photocathode for Electron Source: From Growth, Cleaning, Activation to Performance Abnormal thermal conductivity increase in β-Ga2O3 by an unconventional bonding mechanism using machine-learning potential Wearable, washable piezoresistive pressure sensor based on polyurethane sponge coated with composite CNT/CB/TPU MXene Nb2C/MoS2 heterostructure: Nonlinear optical properties and a new broadband saturable absorber for ultrafast photonics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1