{"title":"Polarization-Independent Enhancement of Third-Harmonic Generation Empowered by Doubly Degenerate Quasi-Bound States in the Continuum","authors":"Tingting Liu, Meibao Qin, Jumin Qiu, Xu Tu, Huifu Qiu, Feng Wu, Tianbao Yu, Qiegen Liu, Shuyuan Xiao","doi":"10.1021/acs.nanolett.5c00146","DOIUrl":null,"url":null,"abstract":"Recent advancements in nonlinear nanophotonics are driven by the exploration of sharp resonances within high-index dielectric metasurfaces. In this work, we leverage doubly degenerate quasi-bound states in the continuum (quasi-BICs) to demonstrate the robust enhancement of third-harmonic generation (THG) in silicon metasurfaces. These quasi-BICs are governed by <i>C</i><sub>4<i>v</i></sub> symmetry and therefore can be equally excited with the pump light regardless of polarization. By tailoring the geometric parameters, we effectively control <i>Q</i>-factors and field confinement of quasi-BICs and thus regulate their resonantly enhanced THG process. A maximum THG conversion efficiency up to 1.03 × 10<sup>–5</sup> is recorded under a pump intensity of 5.85 GW/cm<sup>2</sup>. Polarization-independent THG profiles are further confirmed by mapping their signals across the polarization directions. This work establishes foundational strategies for the ultracompact design of robust and high-efficiency photon upconversion systems.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"14 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00146","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in nonlinear nanophotonics are driven by the exploration of sharp resonances within high-index dielectric metasurfaces. In this work, we leverage doubly degenerate quasi-bound states in the continuum (quasi-BICs) to demonstrate the robust enhancement of third-harmonic generation (THG) in silicon metasurfaces. These quasi-BICs are governed by C4v symmetry and therefore can be equally excited with the pump light regardless of polarization. By tailoring the geometric parameters, we effectively control Q-factors and field confinement of quasi-BICs and thus regulate their resonantly enhanced THG process. A maximum THG conversion efficiency up to 1.03 × 10–5 is recorded under a pump intensity of 5.85 GW/cm2. Polarization-independent THG profiles are further confirmed by mapping their signals across the polarization directions. This work establishes foundational strategies for the ultracompact design of robust and high-efficiency photon upconversion systems.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.