DNA Logic Circuit Based on a Toehold-Independent Strand Displacement Reaction Network

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2025-02-21 DOI:10.1021/acs.nanolett.4c05735
Junlan Liu, Qing Zhang
{"title":"DNA Logic Circuit Based on a Toehold-Independent Strand Displacement Reaction Network","authors":"Junlan Liu, Qing Zhang","doi":"10.1021/acs.nanolett.4c05735","DOIUrl":null,"url":null,"abstract":"DNA strand displacement is widely used in DNA nanotechnology for programming functional DNA circuits. However, many of these systems depend on a single-stranded DNA overhang (toehold). Despite its popularity, eliminating the reliance on a toehold will advance the functionality and practicality of DNA circuits. Herein we develop a toehold-independent DNA strand displacement (TISD) reaction network for DNA logic circuits. Instead of leveraging enthalpic energy provided by the toehold, the TISD reaction employs configurational entropy as the driving force. The working principle, design framework, and practical functionality of the TISD were investigated. TISD-based DNA logic circuits show desirable performances on basic functions like cascaded, fan-in, and fan-out signal transduction. They also exhibit comparable performance on digital computing, including Boolean logic gates, multilayer circuits, and square root computation. As a promising alternative to canonical toehold-dependent systems, TISD will largely expand the design space of DNA-based molecular programming and inspire more versatile DNA-based functional systems.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"48 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05735","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

DNA strand displacement is widely used in DNA nanotechnology for programming functional DNA circuits. However, many of these systems depend on a single-stranded DNA overhang (toehold). Despite its popularity, eliminating the reliance on a toehold will advance the functionality and practicality of DNA circuits. Herein we develop a toehold-independent DNA strand displacement (TISD) reaction network for DNA logic circuits. Instead of leveraging enthalpic energy provided by the toehold, the TISD reaction employs configurational entropy as the driving force. The working principle, design framework, and practical functionality of the TISD were investigated. TISD-based DNA logic circuits show desirable performances on basic functions like cascaded, fan-in, and fan-out signal transduction. They also exhibit comparable performance on digital computing, including Boolean logic gates, multilayer circuits, and square root computation. As a promising alternative to canonical toehold-dependent systems, TISD will largely expand the design space of DNA-based molecular programming and inspire more versatile DNA-based functional systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Visualizing In Situ Nucleation and Growth Dynamics of CdSe-Based Heterostructures Regulated by the Water/Oil-Phase Microenvironment High-Q Resonance Engineering in Momentum Space for Highly Coherent and Rainbow-Free Thermal Emission Polarization-Independent Enhancement of Third-Harmonic Generation Empowered by Doubly Degenerate Quasi-Bound States in the Continuum DNA Logic Circuit Based on a Toehold-Independent Strand Displacement Reaction Network Electron-Withdrawing Hexagonal Boron Nitride as a Biocompatible and Metal-Free Antibacterial Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1