{"title":"Selective response of artificial muscles to multiple stimuli under neural circuit control","authors":"Li Zhang, Wuyin Jin","doi":"10.1016/j.chaos.2025.116162","DOIUrl":null,"url":null,"abstract":"<div><div>To reproduce the process of muscle fibers responding to electrical impulses and executing actions, a photosensitive neural circuit is designed to actuate a moving beam, translating ambient light signals into biological responses and movement processes. The mode selection and action mechanism of light signals on the moving beam are elucidated through dynamic analysis and the evolution of Hamilton energy. Activation of the neuron under single stimulus leads various oscillation modes in the beam, including bursting, spiking, and quasi-periodic oscillations. The beam preferentially responds to stimuli inducing quasi-periodic oscillation when dual stimuli are applied. And the beams are more sensitive to stimuli evoking spiking oscillation in the coupled system connected via electrical synapse. These results indicate synergistic and competitive effects of multiple stimuli in muscle movement, providing guidance for the design of intelligent prostheses that flexibly respond to different tasks and adapt to environmental changes.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"194 ","pages":"Article 116162"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925001754","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
To reproduce the process of muscle fibers responding to electrical impulses and executing actions, a photosensitive neural circuit is designed to actuate a moving beam, translating ambient light signals into biological responses and movement processes. The mode selection and action mechanism of light signals on the moving beam are elucidated through dynamic analysis and the evolution of Hamilton energy. Activation of the neuron under single stimulus leads various oscillation modes in the beam, including bursting, spiking, and quasi-periodic oscillations. The beam preferentially responds to stimuli inducing quasi-periodic oscillation when dual stimuli are applied. And the beams are more sensitive to stimuli evoking spiking oscillation in the coupled system connected via electrical synapse. These results indicate synergistic and competitive effects of multiple stimuli in muscle movement, providing guidance for the design of intelligent prostheses that flexibly respond to different tasks and adapt to environmental changes.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.