Spatiotemporal dependence modeling of wind speeds via adaptive-selected mixture pair copulas for scenario-based applications

IF 9 1区 工程技术 Q1 ENERGY & FUELS Renewable Energy Pub Date : 2025-02-20 DOI:10.1016/j.renene.2025.122650
Jinxing Hu , Pengqian Yan , Guoqiang Tan
{"title":"Spatiotemporal dependence modeling of wind speeds via adaptive-selected mixture pair copulas for scenario-based applications","authors":"Jinxing Hu ,&nbsp;Pengqian Yan ,&nbsp;Guoqiang Tan","doi":"10.1016/j.renene.2025.122650","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing penetration of wind power generation brings significant challenges to the operation and planning of power systems. Appropriate uncertainty modeling of wind speeds is critical to ensure the reliability of optimal decisions, which requires special consideration of spatiotemporal coupled interdependence between wind speeds. However, using only a single type of function cannot fully describe the potential complex dependence structures in historical data, especially in high-dimensional cases, which may lead to serious dimensionality disasters of model. In this paper, a novel spatiotemporal dependence modeling method of wind speeds is presented to flexibly capture the underlying irregular dependency relationships by creatively introducing mixture pair copulas into C-vine structure. The model selection and parameter estimation of mixture pair copulas are carried out adaptively through iterative optimization in expectation maximization (EM) algorithm. Furthermore, a two-step spatiotemporal wind speed scenario generation method is developed based on the constructed model. Experimental results show that the model established by our proposed method can more accurately characterize the spatiotemporal dependence between wind speeds and generate scenarios consistent with the distribution of historical data.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"244 ","pages":"Article 122650"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096014812500312X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing penetration of wind power generation brings significant challenges to the operation and planning of power systems. Appropriate uncertainty modeling of wind speeds is critical to ensure the reliability of optimal decisions, which requires special consideration of spatiotemporal coupled interdependence between wind speeds. However, using only a single type of function cannot fully describe the potential complex dependence structures in historical data, especially in high-dimensional cases, which may lead to serious dimensionality disasters of model. In this paper, a novel spatiotemporal dependence modeling method of wind speeds is presented to flexibly capture the underlying irregular dependency relationships by creatively introducing mixture pair copulas into C-vine structure. The model selection and parameter estimation of mixture pair copulas are carried out adaptively through iterative optimization in expectation maximization (EM) algorithm. Furthermore, a two-step spatiotemporal wind speed scenario generation method is developed based on the constructed model. Experimental results show that the model established by our proposed method can more accurately characterize the spatiotemporal dependence between wind speeds and generate scenarios consistent with the distribution of historical data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
期刊最新文献
Editorial Board Spatiotemporal dependence modeling of wind speeds via adaptive-selected mixture pair copulas for scenario-based applications Effects of isopropanol-n-butanol-ethanol blends on combustion and emissions performance in a spark assisted compression ignition (SACI) engine Review and analysis of thermal management for proton exchange membrane fuel cell hybrid power system Performance and sustainability assessment of a greenhouse dryer with integrated sunlight protection for mint drying
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1