A novel reinforced incomplete cyber-physics ensemble with error compensation learning for within-batch quality prediction

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Advanced Engineering Informatics Pub Date : 2025-02-22 DOI:10.1016/j.aei.2025.103172
Yi Shan Lee , Junghui Chen
{"title":"A novel reinforced incomplete cyber-physics ensemble with error compensation learning for within-batch quality prediction","authors":"Yi Shan Lee ,&nbsp;Junghui Chen","doi":"10.1016/j.aei.2025.103172","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the challenge of real-time quality monitoring in batch operation by emphasizing the significance of within-batch quality estimation. While data-driven machine learning models are easy to construct, they often lack reliability and interpretability when dealing with sparse quality data. Conversely, first-principles models (FPMs) are interpretable but struggle with accuracy and adaptability to changing conditions. To overcome these issues, a three-phase reinforced incomplete cyber-physical ensemble plus error compensation learning (RICPE-P-ECL) method is proposed. This method enhances the adaptability of the incomplete cyber-physical model (IncompCPM), which relies on partially-available FPMs, for online quality prediction under varying conditions. The innovation in RICPE-P-ECL lies in its ensemble design and error compensation strategy. Phase 1 constructs IncompCPMs to predict quality for each operating condition, creating base models for ensemble learning. Phase 2 combines these IncompCPMs, with real-time information assigning weights to each model. Phase 3 involves an error compensation agent that adjusts the real-time ensemble prediction, addressing the limitations of FPMs and sparse data. The method is evaluated using a fed-batch bioreactor as the process model, and the results demonstrate that RICPE-P-ECL outperforms traditional data-driven models such as semi-supervised latent dynamic variational autoencoder and semi supervised dual attentioned latent dynamic complementary state space model, achieving R<sup>2</sup> values close to 1 for real-time within-batch quality prediction across five new testing conditions.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"65 ","pages":"Article 103172"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034625000655","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the challenge of real-time quality monitoring in batch operation by emphasizing the significance of within-batch quality estimation. While data-driven machine learning models are easy to construct, they often lack reliability and interpretability when dealing with sparse quality data. Conversely, first-principles models (FPMs) are interpretable but struggle with accuracy and adaptability to changing conditions. To overcome these issues, a three-phase reinforced incomplete cyber-physical ensemble plus error compensation learning (RICPE-P-ECL) method is proposed. This method enhances the adaptability of the incomplete cyber-physical model (IncompCPM), which relies on partially-available FPMs, for online quality prediction under varying conditions. The innovation in RICPE-P-ECL lies in its ensemble design and error compensation strategy. Phase 1 constructs IncompCPMs to predict quality for each operating condition, creating base models for ensemble learning. Phase 2 combines these IncompCPMs, with real-time information assigning weights to each model. Phase 3 involves an error compensation agent that adjusts the real-time ensemble prediction, addressing the limitations of FPMs and sparse data. The method is evaluated using a fed-batch bioreactor as the process model, and the results demonstrate that RICPE-P-ECL outperforms traditional data-driven models such as semi-supervised latent dynamic variational autoencoder and semi supervised dual attentioned latent dynamic complementary state space model, achieving R2 values close to 1 for real-time within-batch quality prediction across five new testing conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
期刊最新文献
Fast detection of short circuits in copper electrolytic refining with PCA and a branching perceptron Mitigating potential risk via counterfactual explanation generation in blast-based tunnel construction A multiple-criteria sensor selection framework based on qualitative physical models Crafting user-centric prompts for UI generations based on Kansei engineering and knowledge graph Predicting the performance status of aero-engines using a spatio-temporal decoupled digital twin modeling method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1